
LEARNED COMPRESSION OF ENCODING DISTRIBUTIONS

Mateen Ulhaq and Ivan V. Bajić

School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

ABSTRACT

The entropy bottleneck introduced by Ballé et al. [1] is a
common component used in many learned compression mod-
els. It encodes a transformed latent representation using a
static distribution whose parameters are learned during train-
ing. However, the actual distribution of the latent data may
vary wildly across different inputs. The static distribution
attempts to encompass all possible input distributions, thus
fitting none of them particularly well. This unfortunate phe-
nomenon, sometimes known as the amortization gap, results
in suboptimal compression. To address this issue, we propose
a method that dynamically adapts the encoding distribution
to match the latent data distribution for a specific input. First,
our model estimates a better encoding distribution for a given
input. This distribution is then compressed and transmitted as
an additional side-information bitstream. Finally, the decoder
reconstructs the encoding distribution and uses it to decom-
press the corresponding latent data. Our method achieves a
Bjøntegaard-Delta (BD)-rate gain of −7.10% on the Kodak
test dataset when applied to the standard fully-factorized archi-
tecture. Furthermore, considering computational complexity,
the transform used by our method is an order of magnitude
cheaper in terms of Multiply-Accumulate (MAC) operations
compared to related side-information methods such as the
scale hyperprior.

Index Terms— Learned compression, entropy bottleneck,
entropy model, probabilistic modeling, side information

1. INTRODUCTION

In this paper, we explore the compression of probability dis-
tributions that are used in compression. Specifically, we will
focus on probability distributions that are used to encode the la-
tent representations produced by an image compression model.
Entropy models compress latents using encoding distributions,
which are discrete probability mass functions (pmfs) used
for encoding. For example, Ballé et al. [1] encode a latent
representation y using the following entropy models:

1. A “fully-factorized” entropy bottleneck. Each element
yc,i within the c-th channel is encoded using a single
channel-specific non-parametric encoding distribution
pc(y), which is typically fixed once training completes.

Fig. 1. Visualization of the suboptimality of using a single
static encoding distribution. This distribution is optimal, on
average, among all static distributions, but it is suboptimal for
any specific data instance.

2. A Gaussian conditional. For each element yi, the param-
eters µi and σi of its encoding distribution are computed,
conditioned on the latent ẑ = Quantize[ha(y)]. In later
works [2], a Gaussian mixture model (GMM) is some-
times used instead, with parameters w(k)

i , µ(k)
i , and σ

(k)
i

for each Gaussian in the mixture.

Of these two, the entropy bottleneck is more flexible at mod-
eling arbitrary distributions. However, because all elements
within a given channel are modelled using the same distribu-
tion, it is quite poor at specializing and adapting to specific
input distributions. Instead, it models a “conservative” dis-
tribution that tries to encompass all possible inputs, which is
often suboptimal, as visualized in Fig. 1. This is sometimes
known as the amortization gap [3, 4]. In contrast, the Gaussian
conditional is better at adapting to a specific input, though it
is limited to modeling Gaussian distributions. Furthermore, it
must also pay an additional cost for transmitting the distribu-
tion parameters, though this is often worth the trade-off, e.g.,
a savings of roughly 40% for a 10% increase in rate in [1].

In this paper, we propose a method to address this amorti-
zation gap via the compression of an input-specific encoding
distribution. This allows our adaptive entropy bottleneck to
adapt to the input distribution, rather than using a static dataset-
optimized encoding distribution which suffers from the amor-
tization gap. We demonstrate that our low-cost input-adaptive
method can be used by models containing the entropy bottle-
neck in order to achieve better rate-distortion performance.

2. RELATED WORKS

In their “scale hyperprior” architecture, Ballé et al. [1] utilize
an entropy bottleneck to compress the latent representation
z = ha(y). This is known as “side-information,” and its com-
pressed bitstream is transmitted before the bitstream for y.
The reconstructed latent ẑ is then used to determine the param-
eters1 µ and σ of a Gaussian conditional distribution which
is used to reconstruct ŷ. In many such models that utilize the
scale hyperprior, the rate usage of the entropy bottleneck often
comprises roughly 10% of the total rate. Evidently, the entropy
bottleneck is a key component of many state-of-the-art (SOTA)
image compression models, and so it is important to address
the amortization gap suffered by the entropy bottleneck.

Balcilar et al. [3] propose non-learned methods for the
compression and transmission of encoding distributions. For
the factorized entropy model, they first measure a discrete
histogram of the c-th latent channel. Then, they construct an
approximation of the histogram using a K-Gaussian mixture
model parameterized by w(k), µ(k), and σ(k). The aforemen-
tioned parameters are compactly encoded into 8 bits each, and
transmitted. That is, for a model using C activated channels,
(3K − 1) · C · 8 bits are required to transmit the parameters.
(Typically, K ∈ [1, 3] is used, and C ∈ [16, 192] for low-rate
models.) The approximation model is then used as the encod-
ing distribution pŷ(ŷc) =

∑K
k=1 wk N̂ (ŷc; µk, σk

2). For
the Gaussian conditional entropy model, they instead transmit
a factor β(c) that corrects the error in the center (and most
likely) bin’s probability. A key difference between our work
and this prior work is that we formulate a learnable method
for the compression of the encoding distribution.

Galpin et al. [6] introduce a lightweight non-learned con-
text model for raster-scan ordered encoding, similar to Min-
nen et al. [5]. They compare their method in conjunction
with [7, 3] in various configurations on both the standard fac-
torized model and its GDN → ReLU replacement variant. Our
work is also broadly related to source instance overfitting for
compression [8, 9]. However, unlike these approaches, we do
not overfit the neural network, but rather the latent distribution
of the source instance, which is computationally more feasible.

3. PROPOSED METHOD

3.1. Compression of encoding distributions

Let x be an input image, and y = ga(x) be its transformed
latent representation, and ŷ = Quantize[y] be its quantized
version. Consider a fully-factorized entropy model [1], which
models the j-th channel of ŷ (denoted as ŷj) using a single
channel-specific encoding distribution p̂j . In this setting, all
elements within a given channel are modelled using the same
encoding distribution. Then, the “true” distribution pj can be

1In their initial publication, µ is fixed to 0, though later results [5] show
that it is better to predict µ as well.

(Default)

Input image − log2 p − log2 p̂

0

2

4

6

8

10+

Fig. 2. Visualization of target (p) and reconstructed (p̂) encod-
ing distributions. Our proposed method reconstructs p̂, which
is then used by the fully-factorized entropy model to encode
the latent derived from a given input image. Each collection
of distributions is visualized as a color plot, with channels
varying along the x-axis, bins varying along the y-axis, and
negative log-likelihoods represented by the z-axis (i.e., color).

determined exactly by computing the normalized histogram
of ŷj . Notably, pj is also the distribution with the minimum
rate cost for encoding ŷj using the entropy model. That is, the
ideal encoding distribution p̂∗

j is given by

p̂∗
j = argmin

p̂j

[
H(pj) +DKL(pj ∥ p̂j)

]
=⇒ p̂∗

j = pj .

Unfortunately, using the true distribution pj for encoding is
infeasible, since the decoder does not have access to it. In-
stead, we propose a method that generates a reconstructed
approximation p̂ that targets p, subject to a rate trade-off.

Fig. 2 visualizes various collections of encoding distribu-
tions used for encoding different input images using a fully-
factorized entropy model. The left column shows various input
images — except for the “(Default)” image, which is an ab-
stract amortized representation of randomly sampled images
from the training dataset. The middle and right columns visu-
alize the negative log-likelihoods (in bits) of the true (p) and
reconstructed (p̂) encoding distributions, respectively. Each
collection of distributions is visualized as a color plot, where

(i) the x-coordinate is the channel index j of the latent y,
(ii) the y-coordinate is the bin index i of the encoding dis-

tribution, and
(iii) the z-coordinate (i.e., color intensity) is the negative

log-likelihood of (pj)i or (p̂j)i, clipped within [0, 10].
As shown, the default amortized encoding distributions

account for a wide range of possible input distributions. How-
ever, the ideal encoding distributions for any given image often
have much narrower ranges. The average cost of encoding a
randomly drawn sample from a distribution p is equal to the

cross-entropy between that distribution and the one used for
encoding, p̂. Thus, a mismatch between the two leads to ex-
cessive rate usage. In contrast, with our proposed method, the
encoding distributions more closely approximate the ideal dis-
tributions for encoding a specific image. Our method balances
the trade-off between the rate cost of encoding the encoding
distributions p̂ and the rate cost of encoding the latent rep-
resentation ŷ using the encoding distributions. Indeed, our
method accurately reconstructs regions of high probability,
which contribute the most towards saving rate.

3.2. Architecture overview

Fig. 3. Adaptive encoding distribution architecture.

Our proposed method applied to the traditional “fully-
factorized” architecture [1] is visualized in Fig. 3. In this con-
figuration, the latent representation y is first passed through the
histogram layer described in Section 3.3, which estimates the
target distribution p. Then, p is passed through a distribution
compression architecture consisting of the analysis transform
ha,q which generates a latent representation q, followed by an
entropy model (e.g., entropy bottleneck), and then finally a
synthesis transform hs,q which reconstructs the distribution p̂.
The rate cost of encoding q is labelled Rq , and the rate cost of
encoding y using p̂ is labelled Ry .

Like the scale hyperprior, our proposed method also re-
quires the transmission of side-information from which en-
coding distributions are reconstructed. However, the scale
hyperprior does most of its computation within the spatial
dimensions, whereas our method initially collapses the spatial
dimensions into a histogram. This allows our method to be
more computationally efficient when the number of bins and
encoding distributions is small.

3.3. Histogram estimation

To adapt the encoding distribution to the input, we must first
determine the ideal target encoding distribution. We do this by
estimating the histogram for a given latent channel. To ensure
differentiability backwards through the histogram module, we
use the method of kernel density estimation (KDE) [10].

Let [ymin, ymax] be a supporting domain that encom-
passes all values y1, y2, . . . , yN in a specific channel. Let
{b1, b2, . . . , bB} denote the bin centers of the B-bin histogram,
where bi = ymin + i − 1. In the method of kernel density
estimation, which is used to estimate the probability density
function from a set of observations, a kernel function is placed
centered at each observed sample, and those functions are
summed to create the overall density function. To construct
the histogram, we evaluate the kernel density estimate at each
bi. Or rather, we use an equivalent formulation where we
instead place a kernel function at each bin center. Then, the
probability mass in the i-th bin can be estimated as

(Hist(y))i =
1

Normalization

N∑
n=1

K

(
yn − bi
∆b

)
,

where ∆b = bi+1− bi is the bin width, and K(u) is the kernel
function, which we choose to be the triangular function

Ksoft(u) = max{0, 1− |u|}.

Conveniently, the triangular kernel function ensures that the
total mass of a single observation sums to 1. Thus, to ensure
that the total mass of the histogram under all N observations
sums to 1, we may simply choose Normalization = N .

While the above provides a piecewise differentiable esti-
mate of the histogram, it is also possible to determine the exact
hard histogram by using a rectangular kernel function, which
allocates yn to its nearest bin:

Khard(u) = rect(u).

We can then use the “straight-through” estimator (STE) [11]
trick to get the benefits of both:

Hist(y) = Histsoft(y)+detach(Histhard(y)−Histsoft(y)).

Thus, the hard histogram is used for the forward pass, and the
soft histogram for the backward pass (i.e., backpropagation).

3.4. Loss function

Our model follows the variational formulation based on [1];
further details on the construction may be found in earlier
works such as [12, 13, 14]. Briefly, for a variable y, its coun-
terparts ỹ and ŷ denote the noise-modelled (for training) and
quantized (for inference) versions of y, respectively. Fur-
thermore, the variational encoder qϕ(ỹ, q̃ | x) with trainable
parameters ϕ is a probabilistic model of the joint distribution
for ỹ and q̃, for a given input x. Then, the loss function that
we seek to minimize over the input data distribution px(x) is

L = Ex∼px(x) Eỹ,q̃∼qϕ(ỹ,q̃|x)

− log pỹ|q̃(ỹ | q̃)
− λq log pq̃(q̃)

+ λxD(x, x̃)


= Ex∼px(x) [Rỹ(x) + λqRq̃(x) + λxD(x, x̃)] .

For a given input x, Rỹ(x) and Rq̃(x) are the rate costs of
ỹ and q̃, respectively. Furthermore, D(x, x̃) is a distortion
metric — typically mean-squared error (MSE) — between the
input x and its reconstruction x̃. Additionally, λx is a trade-off
hyperparameter between the rate and distortion. And lastly, λq

is a trade-off hyperparameter between the rate cost of encoding
q̃ against the amount of rate saved when using q̃ to encode ỹ.

The choice for λq depends upon the ratio between the
target and trained-upon input dimensions:

λq =
Hx,trainedWx,trained

Hx,targetWx,target
.

For instance, for the target dimension of 768×512 (i.e., images
from the Kodak test dataset) and a trained-upon dimension of
256× 256 (i.e., image patches from the Vimeo-90K dataset),
we set λq = 1

6 .
Let pj = (pj1, . . . , pjB) refer to the discrete B-bin proba-

bility distribution used to encode the j-th channel of ỹ. Then
concretely, the rate cost of ỹ is the cross-entropy between the
true and reconstructed2 discretized distributions,

Rỹ =

M∑
j=1

B∑
i=1

−pji log p̂ji.

Similarly, let q̃j denote the j-th channel of q̃. Then, the rate
cost of q̃ is measured by the typical calculation,

Rq̃ =

M∑
j=1

length(lj)∑
i=1

−lji log lji, where lj = pq̃j
(q̃j).

3.5. Optimization

We will now compute the derivatives for our proposed method.
To simplify the notation, we will focus on a single channel —
the j-th channel — and directly denote ỹj as y, and pj as p.
From the perspective of the backward pass,

pi = (Hist(y))i =
s2

HW

∑
n

Ksoft

(
yn − bi
∆b

)
=

s2

HW

∑
n

max

{
0, 1−

∣∣∣∣yn − bi
∆b

∣∣∣∣} ,

where s is the downscale factor (e.g., s = 24), and the dimen-
sion of the input image x is H ×W . And so,

∂pi
∂yk

=
s2

HW

∑
n

∂

∂yk

[
max

{
0, 1−

∣∣∣∣yn − bi
∆b

∣∣∣∣}]
=

s2

HW

∂

∂yk

[
max

{
0, 1−

∣∣∣∣yk − bi
∆b

∣∣∣∣}]
=

s2

HW

−1

∆b
·H

(
1−

∣∣∣∣yk − bi
∆b

∣∣∣∣)︸ ︷︷ ︸
1 if |yk−bi|<∆b else 0

·
(
2 ·H

(
yk − bi
∆b

)
− 1

)
︸ ︷︷ ︸

−1 if yk<bi else 1

.

2Since the reconstructed distribution is determined directly from y rather
than from ỹ, we denote it by p̂, not p̃.

The corresponding derivative for the reconstructed distribution
p̂ may be determined as

∂p̂i
∂yk

=
∑
l

∂p̂i
∂pl

∂pl
∂yk

≈
∑
l

δil
∂pl
∂yk

=
∂pi
∂yk

,

where we have assumed ∂p̂i

∂pl
≈ δil, and that the dominant term

in the sum is the term where l = i.
The rate cost of encoding the channel y with its associated

encoding distribution p is given by

Ry =
HW

s2

∑
i

−pi log p̂i.

Then, we may compute the derivative as follows:

∂Ry

∂yk
=

−HW

s2

∑
i

∂

∂yk
[pi log p̂i]

=
−HW

s2

∑
i

[
pi
p̂i

∂p̂i
∂yk

+
∂pi
∂yk

log p̂i

]
≈ −HW

s2

∑
i

[
pi
p̂i

∂pi
∂yk

+
∂pi
∂yk

log p̂i

]
assume

∂p̂i
∂yk

≈ ∂pi
∂yk

=
−HW

s2

∑
i

[
pi
p̂i

+ log p̂i

]
∂pi
∂yk

=
−HW

s2

∑
i∈{⌊yk−ymin⌋+1,⌈yk−ymin⌉+1}

[
pi
p̂i

+ log p̂i

]
∂pi
∂yk

=
−1

∆b


[
pi
p̂i

+ log p̂i

]
i=⌈yk−ymin⌉+1

−
[
pi
p̂i

+ log p̂i

]
i=⌊yk−ymin⌋+1


≈ −1

∆b

(
log p̂⌈yk−ymin⌉+1 − log p̂⌊yk−ymin⌋+1

)
assume p̂i ≈ pi.

(1)
Thus, assuming that p̂i ≈ pi and ∂p̂i

∂yk
≈ ∂pi

∂yk
, the gradient of

the rate cost Ry is directly proportional to the difference in
code lengths of the two bins whose centers are nearest to the
value yk. Intuitively, this makes sense, since the rate cost of
encoding the k-th element is directly proportional to the linear
interpolation between the code lengths of the two nearest bins:

Ryk
= −α · log p̂⌊yk−ymin⌋+1 − (1− α) · log p̂⌈yk−ymin⌉+1,

where α = (yk − b⌊yk−ymin⌋+1)/∆b. The linear interpolation
may be justified by the fact that ŷk inhabits only a single bin at
a time. The probability of ŷk inhabiting the left bin is α, and
the probability of inhabiting the right bin is 1− α. This aligns
with Shannon’s measure of entropy, which is the expected
value of the code length.

For comparison, the standard “entropy bottleneck” repre-
sents the likelihood of a symbol by

p(y) = c(y + 1/2)− c(y − 1/2) =

∫ y+1/2

y−1/2

f(t) dt,

where c is a cumulative distribution function and f(y) =
d
dy c(y) is a probability density function, from which the en-
coding distribution can be determined by integrating over the
bin. Then, the rate cost for the “entropy bottleneck” is merely
the sum of the negative log-likelihoods (i.e., code lengths),

Ry =
∑
i

− log p(yi).

We may then compute its derivative as follows:

∂Ry

∂yk
= −

∑
i

∂

∂yk
[log p(yi)] = − ∂

∂yk
[log p(yk)]

= −[p(yk)]
−1 · [f(yk + 1/2)− f(yk − 1/2)] .

(2)

Interestingly, whereas the derivative for the proposed
method (under the assumption that p̂i ≈ pi) computed in (1)
contains the difference between the “right” and “left” log-
likelihoods, the derivative for the entropy bottleneck computed
in (2) contains the difference between the “right” and “left”
evaluations of the probability density function.

4. EXPERIMENTAL SETUP

4.1. Architecture details

As shown in Fig. 4, our ha,q and hs,q are implemented us-
ing a simple five-layer convolutional neural network. In be-
tween each of the convolutional layers shown is a ReLU ac-
tivation function, as well as a channel shuffle operation, as
is done in ShuffleNet [15]. There are two strides of length
2, resulting in a total downscaling factor of sq = 4. For all
our models, we set K = 15 to control the kernel sizes, and
G = 8 to control the number of channel groups. Furthermore,
we set (Nq,Mq) = (32, 16) for low-resolution models, and
(Nq,Mq) = (64, 32) for high-resolution models. The number
of bins B is set between 128 and 1024 across different mod-
els. We have elected to use an entropy bottleneck design for
simplicity, though one can likely further improve the compres-
sion performance of the encoding distribution compression
architecture by using more powerful entropy modeling tech-
niques (e.g., a scale hyperprior). Since λq is a parameter that
depends on the ratio between the target and trained-upon input
dimensions, it may also be advisable to train a single model
that supports λ-rate control strategies (e.g., G-VAE [16, 17]
and QVRF [18]) for both latent representations y, q. However,
we have not yet explored this possibility.

4.2. Training details

Our models are trained on 256× 256 image patches from the
Vimeo-90K triplet dataset [19]. A training batch size of 16
was used, along with the Adam optimizer [20] with an ini-
tial learning rate of 10−4 that was decayed by a factor of 0.1
whenever the validation loss plateaued. Specifically, we loaded

Fig. 4. Architecture layer diagram for ha,q and hs,q transforms.
k denotes kernel size, g denotes number of channel groups,
and ↓, ↑ denote stride.

the weights of the pretrained models from CompressAI [21],
which were also trained using the same setup as above. We re-
placed the static distributions of the EntropyBottleneck
module with the dynamically generated adaptive distributions
from our proposed encoding distribution compression module.
Then, we froze the weights for ga and gs, and trained only the
weights for our encoding distribution compression model (i.e.,
for ha,q and hs,q, and the entropy model for q). Finally, we
evaluated our models on the standard Kodak test dataset [22]
containing 24 images of size 768× 512.

5. EXPERIMENTAL RESULTS

Fig. 5 shows the rate-distortion (RD) curves comparing a given
base model against the same model enhanced with an encoding
distribution compression method.

In Table 1, we compare the rate savings of our proposed
method against the base model at various quality levels. Ad-
ditionally, we also list the maximum rate savings that can be

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Bit-rate [bpp]

26

28

30

32

34

36

38

40

ps
nr

 [d
B]

Performance evaluation on Kodak - PSNR (RGB)

bmshj2018-factorized
bmshj2018-factorized-pdf-balcilar2022
bmshj2018-factorized-pdf-ulhaq2024
bmshj2018-factorized-pdf-ideal

Fig. 5. RD curves for the Kodak dataset.

theoretically achieved by perfectly eliminating the amortiza-
tion gap between the true and reconstructed distributions, i.e.,
by using the true distribution directly as the encoding distri-
bution with zero additional transmission cost. As shown, our
approach achieves a 7.10% BD-rate reduction over the base
model, in comparison to a maximum possible reduction of
8.21% BD-rate reduction achievable by perfectly eliminating
the amortization gap.

Table 1. Potential and achieved rate savings for the bmshj2018-
factorized model [1] when equipped with our proposed distri-
bution compression method.

Quality Original
(bpp)

Potential
gain (bpp)

Potential
gain (%)

Our
(bpp)

Our gain
(bpp)

Our gain
(%)

1 0.122 -0.012 -9.45 0.113 -0.010 -8.06
2 0.188 -0.016 -8.66 0.174 -0.014 -7.53
3 0.287 -0.024 -8.20 0.267 -0.020 -7.13
4 0.440 -0.035 -7.90 0.409 -0.031 -6.95
5 0.647 -0.051 -7.83 0.602 -0.045 -6.98
6 0.965 -0.080 -8.25 0.898 -0.067 -6.95
7 1.349 -0.111 -8.24 1.254 -0.095 -7.04
8 1.830 -0.149 -8.14 1.705 -0.126 -6.88

* -8.21 -7.10

In order to compute the potential savings, we first ran the
base model on each image from the Kodak test dataset [22],
giving us a collection of true distributions p for each image.
Furthermore, the base model provides a static encoding dis-
tribution pdefault. Then, we computed the potential savings
(in bpp) for each image as (∆R)max = 1

s2

∑
j DKL(pj ∥

(pdefault)j). We then averaged these values across the dataset.
In Table 2, we compare the rate savings for various base

models equipped with a distribution compression method. “Ra-
tio” is the fraction of the total rate occupied by the original
unmodified model. “Gap” is the maximum potential rate gain
with perfect distribution reconstruction and zero additional
transmission cost. “Gain” is the actual rate gain achieved by
the model. All models are evaluated on the Kodak dataset [22].

Table 2. Comparison of rate savings for various models.

Model Quality

Factorized Total

Ratio
(%)

Gap
(%)

Gain
(%)

Gain
(%)

bmshj2018-factorized [1] + Balcilar2022 [3] 1 100 -9.45 -6.79 -6.79
bmshj2018-factorized [1] + ours 1 100 -9.45 -8.06 -8.06

bmshj2018-factorized [1] + Balcilar2022 [3] * 100 -8.21 -5.74 -5.74
bmshj2018-factorized [1] + ours * 100 -8.21 -7.10 -7.10

Table 3 reports the number of trainable parameters and the
number of multiply-accumulate operations (MACs) per pixel
for various model configurations. The results are calculated
assuming an input image size of 768× 512, and a latent repre-
sentation size of 48 × 32. As shown, our model requires far
fewer parameters and MACs/pixel than the comparable scale

hyperprior [1] model. In particular, for comparable configura-
tions, our method’s ha,q and hs,q transforms require 96–97%
fewer parameters and 96–99% fewer MACs/pixel than the
scale hyperprior’s ha and hs transforms.

Table 3. Trainable parameter counts and number of multiply-
accumulate operations (MACs) per pixel.

Model configuration Params MAC/px Params MAC/px

(My, Nq,Mq, K,G,B) ha,q hs,q

Ours (192, 32, 16, 15, 8, 256) 0.029M 10 0.029M 10
Ours (320, 64, 32, 15, 8, 1024) 0.097M 126 0.097M 126

(N,M) ha hs

bmshj2018-hyperprior [1] (128, 192) 1.040M 1364 1.040M 1364
bmshj2018-hyperprior [1] (192, 320) 2.396M 3285 2.396M 3285

6. CONCLUSION

In this paper, we proposed a learned method for the com-
pression of encoding distributions. Our method effectively
measures and compresses the encoding distributions used by
the entropy bottleneck. The experiments we performed where
we only trained the distribution compression component show
that this method is effective at significantly reducing the amor-
tization gap. Since many learned compression models use
the entropy bottleneck component, our method provides them
with a low-cost improvement in bitrate. Furthermore, our work
opens up the possibility of using learned distribution compres-
sion as a paradigm for correcting encoding distributions.

6.1. Future work

A few steps remain towards making encoding distribution
corrective methods viable parts of more advanced entropy
models such as [1, 2, 23]. These include the following:

• The proposed adaptive entropy bottleneck needs to be
formulated in such a way that it can be trained fully end-
to-end. When training a pretrained base model equipped
with our adaptive distribution compression module, we
found that unfreezing the pretrained transform weights
led to a degradation in RD performance.

• Application of our adaptive distribution method to the
Gaussian conditional component of entropy models.
This component (along with the entropy bottleneck)
is used to construct entropy modeling methods such as
those used in [1, 2, 23]. Most SOTA learned image
compression models predict the location and scale pa-
rameters of the Gaussian encoding distributions. There
are potential rate improvements to be made by adapting
the shapes of the encoding distributions to those that
more closely match the data distribution.

7. REFERENCES

[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston, “Variational image compres-
sion with a scale hyperprior,” in Proc. ICLR, 2018.

[2] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and
Jiro Katto, “Learned image compression with discretized
gaussian mixture likelihoods and attention modules,” in
Proc. IEEE/CVF CVPR, 2020, pp. 7939–7948.

[3] Muhammet Balcilar, Bharath Damodaran, and Pierre Hel-
lier, “Reducing the amortization gap of entropy bottle-
neck in end-to-end image compression,” in Proc. Picture
Coding Symposium (PCS). IEEE, 2022, pp. 115–119.

[4] Chris Cremer, Xuechen Li, and David Duvenaud, “Infer-
ence suboptimality in variational autoencoders,” in Int.
Conf. on Machine Learning (ICML). PMLR, 2018, pp.
1078–1086.

[5] David Minnen, Johannes Ballé, and George D Toderici,
“Joint autoregressive and hierarchical priors for learned
image compression,” Advances in neural information
processing systems, vol. 31, 2018.

[6] Franck Galpin, Muhammet Balcilar, Frédéric Lefeb-
vre, Fabien Racapé, and Pierre Hellier, “Entropy cod-
ing improvement for low-complexity compressive auto-
encoders,” in Proc. IEEE DCC, 2023, pp. 338–338.

[7] Joaquim Campos, Simon Meierhans, Abdelaziz
Djelouah, and Christopher Schroers, “Content adap-
tive optimization for neural image compression,” in Proc.
IEEE/CVF CVPR Workshops, 2019.

[8] Ties van Rozendaal, Iris A. M. Huijben, and Taco S.
Cohen, “Overfitting for fun and profit: Instance-adaptive
data compression,” in Proc. ICLR, 2021, pp. 1–18.

[9] Honglei Zhang, Francesco Cricri, Hamed Rezazade-
gan Tavakoli, Maria Santamaria, Yat-Hong Lam, and
Miska M. Hannuksela, “Learn to overfit better: finding
the important parameters for learned image compression,”
in Proc. IEEE VCIP, 2021, pp. 1–5.

[10] Emanuel Parzen, “On Estimation of a Probability Den-
sity Function and Mode,” The Annals of Mathematical
Statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[11] Yoshua Bengio, Nicholas Léonard, and Aaron Courville,
“Estimating or propagating gradients through stochastic
neurons for conditional computation,” 2013.

[12] Diederik P Kingma and Max Welling, “Auto-encoding
variational bayes,” 2013.

[13] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli,
“End-to-end optimized image compression,” in Proc.
ICLR, 2017.

[14] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Fer-
enc Huszár, “Lossy image compression with compressive
autoencoders,” in Proc. ICLR, 2017.

[15] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun, “ShuffleNet: An extremely efficient convolutional
neural network for mobile devices,” in Proc. IEEE/CVF
CVPR, 2018, pp. 6848–6856.

[16] Ze Cui, Jing Wang, Shangyin Gao, Bo Bai, Tiansheng
Guo, and Yihui Feng, “G-VAE: A continuously variable
rate deep image compression framework,” 2020.

[17] Ze Cui, Jing Wang, Shangyin Gao, Tiansheng Guo, Yihui
Feng, and Bo Bai, “Asymmetric gained deep image
compression with continuous rate adaptation,” in Proc.
IEEE/CVF CVPR, 2022, pp. 10532–10541.

[18] Kedeng Tong, Yaojun Wu, Yue Li, Kai Zhang, Li Zhang,
and Xin Jin, “QVRF: A quantization-error-aware vari-
able rate framework for learned image compression,” in
Proc. IEEE ICIP, 2023.

[19] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman, “Video enhancement with task-
oriented flow,” Int. J. Comput. Vis. (IJCV), vol. 127, pp.
1106–1125, 2019.

[20] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” 2015.

[21] Jean Bégaint, Fabien Racapé, Simon Feltman, and Ak-
shay Pushparaja, “CompressAI: a PyTorch library and
evaluation platform for end-to-end compression research,”
2020.

[22] Eastman Kodak, “Kodak lossless true color image suite
(PhotoCD PCD0992),” .

[23] Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hong-
wei Qin, and Yan Wang, “ELIC: Efficient learned image
compression with unevenly grouped space-channel con-
textual adaptive coding,” in Proc. IEEE/CVF CVPR,
2022, pp. 5718–5727.

	 Introduction
	 Related works
	 Proposed method
	 Compression of encoding distributions
	 Architecture overview
	 Histogram estimation
	 Loss function
	 Optimization

	 Experimental setup
	 Architecture details
	 Training details

	 Experimental results
	 Conclusion
	 Future work

	 References

