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Abstract

Over the last decade, deep learning has shown great success at performing computer vision tasks,
including classification, super-resolution, and style transfer. Now, we apply it to data compression to
help build the next generation of multimedia codecs. This thesis provides three primary contributions
to this new field of learned compression. First, we present an efficient low-complexity entropy
model that dynamically adapts the encoding distribution to a specific input by compressing and
transmitting the encoding distribution itself as side information. Secondly, we propose a novel
lightweight low-complexity point cloud codec that is highly specialized for classification, attaining
significant reductions in bitrate compared to non-specialized codecs. Lastly, we explore how motion
within the input domain between consecutive video frames is manifested in the corresponding
convolutionally-derived latent space.

Keywords: deep learning; image compression; point cloud compression; video coding for machines

iii



Acknowledgments

I would like to thank my advisor, Dr. Ivan V. Bajić, for his guidance and support throughout my
graduate studies. His feedback in reviewing and editing my papers and thesis was invaluable, as was
his advice on research and career development. He first supervised my undergraduate Bachelor’s
thesis, during which his encouragement motivated me to develop a prototype for demonstration at the
NeurIPS 2019 conference. His insight in the subject areas of compression, information theory, and
deep learning helped guide me in my research.

I would also like to thank my committee members, including: Dr. Mirza Faisal Beg, who was my
supervisor for an NSERC Undergraduate Student Research Awards (USRA) research project, and
provided me with an opportunity to work on a challenging problem in computer vision, related to
medical mobile applications; Dr. Jie Liang, who first inspired and intrigued me with his lectures on
Multimedia Communications Engineering involving the subjects of compression and deep learning;
and Dr. Andrew Rawicz, who taught our Capstone project course during my undergraduate studies,
instilling within us the value of a practical approach to engineering, as well as skills for managing
technical projects.

I also greatly enjoyed my time as an intern at Interdigital’s AI Lab headed by Dr. Jaideep
Chandrashekar. My discussions with Dr. Fabien Racapé and Dr. Hyomin Choi significantly improved
my understanding of this field. I also enjoyed my discussions with other interns, namely Ujwal
Dinesha and Ezgi Özyılkan, who imparted upon me a greater appreciation for reinforcement learning
and information theory, respectively.

I would also like to show my appreciation for the community at SFU, including my friends and
peers, as well as the professors of the schools of engineering science and computer science, and
the departments of physics and mathematics. Within the SFU Multimedia Lab research group, I
would also mention Alon Harell and Anderson de Andrade for their interest in my work as well as
discussions within the subject area.

And of course, for the never-ending support from my family, including my mother and sister, I
am grateful.

iv



Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Data compression: an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Learning-based compression: the current landscape . . . . . . . . . . . . . . . . . 2
1.3 Compression architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Entropy modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Compression of probability distributions 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Compression of probability distributions . . . . . . . . . . . . . . . . . . 13
2.3.2 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Histogram estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Training details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Point cloud compression for classification 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3.3 Proposed codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Input compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Motivation for the proposed codec . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Proposed architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Lightweight and micro architectures . . . . . . . . . . . . . . . . . . . . . 33

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Proposed codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Input compression codec . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Latent space motion analysis for collaborative intelligence 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Latent space motion analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion 50

References 52

List of Tables

Table 1.1 Compression architecture overview for image codecs . . . . . . . . . . . . . 4

Table 2.1 Rate savings for bmshj2018-factorized per-quality . . . . . . . . . . . . . . 25
Table 2.2 Comparison of rate savings for various models . . . . . . . . . . . . . . . . 25
Table 2.3 Trainable parameters and MACs per pixel . . . . . . . . . . . . . . . . . . . 26

Table 3.1 Layer sizes and MAC counts for various proposed codec types . . . . . . . . 33
Table 3.2 BD metrics and max attainable accuracies per codec . . . . . . . . . . . . . 37

vi



List of Figures

Figure 1.1 RD curves of all codecs on the Kodak dataset . . . . . . . . . . . . . . . 3
Figure 1.2 High-level comparison of codec architectures . . . . . . . . . . . . . . . 4
Figure 1.3 Visualization of an encoding distribution for a single element . . . . . . . 6
Figure 1.4 Visualization of encoding distributions for a latent tensor . . . . . . . . . 7

Figure 2.1 Suboptimality of static amortized encoding distributions . . . . . . . . . . 11
Figure 2.2 Visualization of target and reconstructed probability distributions . . . . . 14
Figure 2.3 Adaptive probability distribution compression architecture . . . . . . . . 17
Figure 2.4 Kernel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 2.5 Architecture layer diagram for ha,q and hs,q transforms . . . . . . . . . . 23
Figure 2.6 RD curves for Kodak dataset . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.1 High-level comparison of codec architectures . . . . . . . . . . . . . . . 31
Figure 3.2 Proposed point cloud codec architecture . . . . . . . . . . . . . . . . . . 32
Figure 3.3 Rate-accuracy curves evaluated on the ModelNet40 test set . . . . . . . . 36
Figure 3.4 Reconstructed point cloud samples . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.1 Basic collaborative intelligence system . . . . . . . . . . . . . . . . . . . 42
Figure 4.2 Motion estimates for input frames and feature maps . . . . . . . . . . . . 42
Figure 4.3 Overview of motion problem . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 4.4 Example motion transformations and motion compensated tensors . . . . 47
Figure 4.5 NRMSE for various transformations . . . . . . . . . . . . . . . . . . . . 48
Figure 4.6 NRMSE distribution for random transformations . . . . . . . . . . . . . . 49

vii



Chapter 1

Introduction

The storage and transmission of data is a fundamental aspect of computing. However, every bit stored
or transmitted incurs a cost. To mitigate this cost, we turn to data compression. Data compression is
the process of reducing the amount of bits required to represent, store, or transmit data.

The modern age of the Internet would look very different without data compression: web pages
would take much longer to load, and images and video would be much lower in resolution. The
transmission of an uncompressed video stream would require thousands of times more bits than its
compressed counterpart. Video streaming services such as Netflix and YouTube would suffer from a
much higher operating cost, and would be much less accessible to the average consumer.

Data compression algorithms, known as codecs, are often specialized for encoding a particular
type of data. Common types of data include text, images, video, audio, and point clouds. Data from
such sources often contains redundancy or patterns which can be identified and eliminated by a
compression algorithm to represent the data more compactly. For instance, pixels that are near each
other in an image are often similar in color, which is a phenomenon known as spatial redundancy.

1.1 Data compression: an example

As an example of how data compression works, consider the random variable X representing the
summer weather in the city of Vancouver, Canada. Let us say that the possible weather conditions
(Sunny, Rainy, Cloudy) abbreviated as (S, R, C) are predicted to occur with the probabilities (1

2 , 1
4 , 1

4),
respectively. To compress a sequence of weather observations X1, X2, . . . , Xn, we can use a codebook
that maps each weather condition to a binary string:

S→ 0,

R→ 10,

C→ 11.

Then, a sequence of weather observations such as the 64-bit ASCII string “SRCSSRCS” can be
represented more compactly as the encoded 12-bit binary string “010110010110”.
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Notably, for any given input x ∈ {S, R, C}, the length in bits of its encoded representation is equal
to − log2 P (X = x). That is, − log2

1
2 = 1 bit for S, − log2

1
4 = 2 bits for R, and − log2

1
4 = 2 bits

for C. Thus, if X1, X2, . . . , Xn are truly independently and identically distributed (i.i.d.), then this
codebook is the optimal codebook.

However, many raw sources studied in compression are not i.i.d. In fact, there are often patterns
or correlations between consecutive elements. For instance, in the weather example, it is more likely
that the weather will be R on a given day if it was C on the previous day. Then, the probability
distribution used for encoding should be reevaluated to a more realistic prediction, e.g. (1

4 , 1
2 , 1

4).
The codebook must then also be updated to dynamically match this new encoding distribution:

S→ 10,

R→ 0,

C→ 11.

This is the optimal codebook for the new encoding distribution. It should be used instead of the
general codebook whenever the previous weather observation is C.

We can compress even further by determining a more accurate encoding distribution that predicts
the next observation more accurately. More sophisticated probability modeling might also take
into account the weather from the past several days, or from the same day in previous years. A
good model might blend in other related sources of information such as past and current humidity,
temperature, and wind speed. It might also analyze such information on multiple scales: locally
within the city, within the province, or within the continent. Such probability modeling is the work
of a meteorologist... and also a data compression researcher! In data compression, this process of
determining the encoding distribution on-the-fly based on previous information is known as context
modeling; and more generally, for any way of determining the encoding distribution, as entropy
modeling.

1.2 Learning-based compression: the current landscape

Deep learning based approaches have recently been applied to data compression. Learning-based
approaches have demonstrated compression performance that is competitive with traditional standard
codecs. For instance, Fig. 1.1 compares the Rate-Distortion (RD) performance curves for popular and
state-of-the-art (SOTA) codecs in image compression, evaluated on generic non-specialized datasets.

Learned compression has been applied to various types of data including images, video, and
point clouds. For learned image compression, most prominent are approaches based on Ballé et al.’s
compressive variational autoencoder (VAE), including [2]–[4]. Other approaches based on RNNs
and GANs have also been applied, including [5], [6]. Works in learned point cloud compression
include [7]–[11], and works in learned video compression include [12]–[15].
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Figure 1.1: RD curves for image compression codecs on the Kodak dataset [1].

Currently, one factor inhibiting industry adoption of learning-based codecs is that they are
much more computationally expensive than traditional codecs like JPEG and WebP. In fact, learned
compression codecs exceed reasonable computational budgets by a factor of 100–10000×. To remedy
this, there is work being done towards designing low-complexity codecs for image compression,
including [16]–[19].

Learned compression has also shown benefits when applied to learned machine or computer
vision tasks. In Coding for Machines (CfM) — also referred to as Video Coding for Machines
(VCM) [20] — compression is used for machine tasks such as classification, object detection, and
semantic segmentation. In this paradigm, the encoder-side device compresses the input into a compact
task-specialized bitstream that is transmitted to the decoder-side device or server for further inference.
This idea of partially processing the input allows for significantly lower bitrates in comparison to
transmitting the entire unspecialized input for inference. Extending this technique, scalable multi-task
codecs such as [21], [22] allocate a small base bitstream for machine tasks, and a larger enhancement
bitstream for a higher-quality input reconstruction intended for human viewing.
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1.3 Compression architecture overview

A simple compression architecture used by both traditional and learned compression methods alike is
shown in Fig. 1.2a. This architecture consists of several components. Table 1.1 lists some common
choices for the components in this architecture.

(a) simple

(b) hyperprior

Figure 1.2: High-level comparison of codec architectures.

Table 1.1: Components of a compression architecture for various image compression codecs.

Model Quantizer Entropy coding Analysis transform
(ga)

Synthesis transform
(gs)

JPEG non-uniform zigzag + RLE,
Huffman 8 × 8 block DCT 8 × 8 block DCT−1

JPEG 2000 uniform dead-zone
or trellis coded (TCQ) arithmetic multilevel DWT multilevel DWT−1

bmshj2018-factorized uniform arithmetic (Conv, GDN) ×4 (ConvT, IGDN) ×4

In this architecture, the input x goes through a transform ga to generate an intermediate
representation y, which is quantized to ŷ. Then, ŷ is losslessly entropy coded to generate a
transmittable bitstream from which ŷ can be perfectly reconstructed. (at the decoder side.) Finally, ŷ

is fed into a synthesis transform gs which reconstructs an approximation of x, which is labeled x̂.
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Each of the components of the standard compression architecture are described in further detail
below:

• Analysis transform (ga): The input first is transformed by the ga transform into a transformed
representation y. This transform often outputs a signal that contains less redundancy than
within the input signal, and has its energy compacted into a smaller dimension. For instance,
the JPEG codec transforms 8 × 8 blocks from the input image using a discrete cosine transform
(DCT). This concentrates most of the signal energy into the low-frequency components that
are often the dominating frequency component within natural images. In the case of learned
compression, the analysis transform is often a nonlinear transform comprised of multiple deep
layers and many parameters. For instance, the bmshj2018-factorized model’s ga transform
contains 4 downsampling convolutional layers interleaved with GDN [23] nonlinear activations,
totaling 1.5M to 3.5M parameters.

• Quantization: The analysis transform outputs coefficients contained in a rather large (potentially
even continuous) support. However, much of this precision is not necessary for a reasonably
accurate reconstruction. Thus, we drop most of this unneeded information by binning the
transformed coefficients into a much smaller discretized support. There are many choices
for the reconstructed quantization bin values and boundaries. Popular quantizers include the
uniform, dead-zone, Lloyd-Max, and Trellis-coded quantizers. Ballé et al. [24] use a uniform
quantizer during inference, which is replaced with additive unit-width uniform noise during
training. More recently, the STE quantizer has also been used during training.

• Entropy coding: The resulting ŷ is losslessly compressed using an entropy coding method.
The entropy coder is targeted to match a specific encoding distribution. Whenever the encoding
distribution correctly predicts an encoded symbol with high probability, the relative bit cost for
encoding that symbol is reduced. Thus, some entropy models are context-adaptive, and change
the encoding distribution on-the-fly in order to accurately probabilistically predict the next
encoded symbol value. Huffman coding is used in JPEG, though it has trouble replicating a
given target encoding probability distribution and also at adapting to dynamically changing
encoding distributions. Thus, more recent codecs prefer to use arithmetic coders, which can
much better approximate rapidly changing target encoding distributions. The CompressAI [25]
implementation uses rANS [26], [27], a popular recent innovation that is quite fast under
certain conditions.

• Synthesis transform (gs): Finally, the reconstructed quantized ŷ is fed into a synthesis
transform gs, which produces x̂. In JPEG, this is simply the inverse DCT. Similar to the
analysis transform, in learned compression, the synthesis transform consists of several layers
and many parameters. For instance, the bmshj2018-factorized model’s gs transform contains
4 upsampling transposed convolutional layers interleaved with IGDN nonlinear activations,
totaling 1.5M to 3.5M parameters.
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The length of the bitstream is known as the rate cost Rŷ, which we seek to minimize. We also
seek to minimize the distortion D(x, x̂), which is typically the mean squared error (MSE) between
x and x̂. To balance these two competing goals, it is common to introduce a Lagrangian trade-off
hyperparameter λ, so that the quantity sought to be minimized is L = Rŷ + λ D(x, x̂).

1.4 Entropy modeling

A given element ŷi ∈ Z of the latent tensor ŷ is compressed using its encoding distribution
pŷi : Z → [0, 1], as visualized in Fig. 1.3. The rate cost for encoding ŷi is the negative log-likelihood,
Rŷi = − log pŷi(ŷi), measured in bits. Afterward, the exact same encoding distribution is used by
the decoder to reconstruct the encoded symbol.

Figure 1.3: Visualization of an encoding distribution used for compressing a single element ŷi.

The encoding distributions are determined using an entropy model. Fig. 1.4 visualizes the
encoding distributions generated by well-known entropy models. These are used to compress a latent
tensor ŷ with dimensions My × Hy × Wy. The exact total rate cost for encoding ŷ using pŷ is simply
the sum of the negative log-likelihoods of each element, Rŷ =

∑
i − log pŷi(ŷi).

Some popular choices for entropy models include:

• A “fully factorized” entropy bottleneck, as introduced by Ballé et al. [24]. Let pŷc,i : Z → [0, 1]
denote the probability mass distribution used to encode the i-th element ŷc,i from the c-th
channel of ŷ. The same encoding distribution pŷc is used for all elements within the c-th channel,
i.e., pŷc,i = pŷc , ∀i. This entropy model works best when all such elements ŷc,1, ŷc,2, . . . , ŷc,N

are independently and identically distributed (i.i.d.).

Ballé et al. [24] model the encoding distribution as a static non-parametric distribution that
is computed as the binned area under a probability density function fc : R → R, with a
corresponding cumulative distribution function Fc : R → [0, 1]. Then,

pŷc
(ŷc,i) =

∫ 1
2

− 1
2

f(ŷc,i + τ) dτ = Fc(ŷc,i + 1/2) − Fc(ŷc,i − 1/2). (1.1)

6



(a) fully factorized (b) conditional

Figure 1.4: Visualization of encoding distributions used for compressing a latent tensor ŷ with dimensions
My × Hy × Wy . In (a), the encoding distributions within a given channel are all the same since the elements
within a channel are assumed to be i.i.d. w.r.t. each other. Furthermore, in the case of the fully factorized
entropy bottleneck used by Ballé et al. [24], each encoding distribution is a static non-parametric distribution. In
(b), the encoding distributions for each element are uniquely determined, and conditioned on side information.
Furthermore, in the case of the Gaussian conditional hyperprior used by Ballé et al. [24], the encoding
distributions are Gaussian distributions parameterized by a mean and variance.

Fc is modelled using a small fully-connected network composed of five linear layers with
channels of sizes [1, 3, 3, 3, 3, 1], whose parameters are tuned during training. Note that Fc is
not conditioned on any other information, and is thus static.

• A Gaussian conditional, as introduced by Ballé et al. [24]. Let fi(y) = N (y; µi, σi
2) be

a Gaussian distribution with mean µi and variance σi
2. Then, like in (1.1), the encoding

distribution pŷi
is the binned area under fi:

pŷi
(ŷi) =

∫ 1
2

− 1
2

fi(ŷi + τ) dτ. (1.2)

In the mean-scale variant of the “hyperprior” model introduced by Ballé et al. [24], the
parameters µi and σi

2 are computed by [µi, σi
2] = (hs(ẑ))i. Here, the latent representation

ẑ = Quantize[ha(y)] is computed by the analysis transform ha, and then encoded using
an entropy bottleneck and transmitted as side information; and hs is a synthesis transform.
This architecture is visualized in Fig. 1.2b. Cheng et al. [3] define fi as a mixture of K

Gaussians — known as a Gaussian mixture model (GMM) — with parameters µ
(k)
i and

σ
(k)
i for each Gaussian, alongside an affine combination of weights w

(1)
i , . . . , w

(K)
i that

satisfy the constraint
∑

k w
(k)
i = 1. A GMM encoding distribution is thus defined as

fi(y) =
∑K

k=1 w
(k)
i N (y; µ

(k)
i , (σ(k)

i )2).
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1.5 Thesis outline and contributions

This thesis presents three main contributions:

• In Chapter 2, “Compression of probability distributions”, we present a method that can
dynamically adapt the encoding distribution to the latent data distribution of a specific input. It
does so by compressing and transmitting the distribution as side information. This is done
using a small learned compression model that is specialized for compressing the encoding
distributions. In comparison to competing methods such as a scale hyperprior, our method
requires 25–130× less computation.

• In Chapter 3, “Point cloud compression for classification”, we present a PointNet-based
point cloud codec that is specialized for classification. Our codec attains a 94% reduction in
BD-bitrate over non-specialized codecs on the ModelNet40 dataset. We also provide very
lightweight model configurations of our codec that achieve similar bitrate improvements but
with a very low computational cost.

• In Chapter 4, “Latent space motion analysis for collaborative intelligence”, we analyze how
motion between consecutive input image frames x1 and x2 affects the corresponding latent
representations y1 and y2 of typical convolutional neural networks (CNNs). Specifically, given a
known optical motion between x1 and x2, we quantify how well y2 can be predicted by applying
that same motion to y1. Since learned video compression models encode convolutionally-
derived latent representations, it is useful to know how predictably or naturally the latent space
behaves under input motion.
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1. M. Ulhaq and I. V. Bajić, “Learned point cloud compression for classification,” in Proc. IEEE
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arXiv: 2301.04183 [eess.IV]

4. M. Ulhaq and F. Racapé, “CompressAI Trainer,” 2022, [Online]. Available: https://
github.com/InterDigitalInc/CompressAI-Trainer

8

https://arxiv.org/abs/2308.05959
https://arxiv.org/abs/2102.04018
https://arxiv.org/abs/2301.04183
https://github.com/InterDigitalInc/CompressAI-Trainer
https://github.com/InterDigitalInc/CompressAI-Trainer


5. H. Choi, F. Racapé, S. Hamidi-Rad, M. Ulhaq, and S. Feltman, “Frequency-aware learned
image compression for quality scalability,” in Proc. IEEE VCIP, 2022, pp. 1–5, arXiv:
2301.01290 [eess.IV]

6. S. R. Alvar, M. Ulhaq, H. Choi, and I. V. Bajić, “Joint image compression and denoising via
latent-space scalability,” Frontiers in Signal Processing, vol. 2, 2022, arXiv: 2205.01874
[eess.IV]

7. M. Ulhaq and I. V. Bajić, “ColliFlow: A library for executing collaborative intelligence
graphs,” demoed at NeurIPS, 2020, [Online]. Available: https://yodaembedding.github.
io/neurips-2020-demo/

9

https://arxiv.org/abs/2301.01290
https://arxiv.org/abs/2205.01874
https://arxiv.org/abs/2205.01874
https://yodaembedding.github.io/neurips-2020-demo/
https://yodaembedding.github.io/neurips-2020-demo/


Chapter 2

Compression of probability distributions

The entropy bottleneck introduced by Ballé et al. [24] is a common component used in many learned
compression models. It encodes a transformed latent representation using a static distribution whose
parameters are learned during training. However, the actual distribution of the latent data may
vary wildly across different inputs. The static distribution attempts to encompass all possible input
distributions, thus fitting none of them particularly well. This unfortunate phenomenon, sometimes
known as the amortization gap, results in suboptimal compression rates. Moreover, the transform
also suffers difficulties from being constrained into targeting an inflexible static distribution, leading
to further inefficiencies. To address these issues, we propose a method that dynamically adapts
the encoding distribution to match the latent data distribution for a specific input. First, our model
estimates a better encoding distribution for a given input. This distribution is then compressed
and transmitted as an additional side-information bitstream. Finally, the decoder reconstructs the
encoding distribution and uses it to decompress the corresponding latent data. Our method achieves
a BD-rate gain of -6.95% on the Kodak test dataset when applied to the standard fully factorized
architecture. Furthermore, the transform used by our method costs only as few as 10 MACs/pixel, in
contrast to related side-information methods such as the scale hyperprior, which costs at least 1300
MACs/pixel.

2.1 Introduction

At the heart of compression is the probability distribution. Typically, we model the data to be
compressed using a probability distribution. It is less common to model the probability distribution
itself. Nonetheless, as will soon see, there is potential value in doing so.

In this chapter, we explore the compression of probability distributions that are used in compression.
Specifically, we will focus on probability distributions that are used to model the latent representations
produced by an image compression model. The entropy models of learned image compression
models utilize probability distributions to compress transformed latent representations. For example,
Ballé et al. [24] model a latent representation y using the following entropy models:
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1. A “fully factorized” entropy bottleneck. Each element yc,i within the c-th channel is modelled
using a single channel-specific non-parametric probability distribution pc(y), which is fixed
once training completes. That is, the elements yc,1, yc,2, . . . , yc,HW within the c-th channel
are assumed to be drawn from independent and identically distributed (i.i.d.) random variables
with the probability distribution pc(y).

2. A Gaussian conditional. For each element yi, the parameters µi and σi of its encoding
distribution are computed, conditioned on the latent representation ẑ = Quantize[ha(y)]. In
some cases, the modeling distribution is a mixture of K Gaussians — known as a Gaussian
mixture model (GMM) — with parameters µ

(k)
i and σ

(k)
i for each Gaussian, alongside an affine

combination of weights w
(K)
i that satisfy the constraint

∑
k w

(k)
i = 1.

Both of these have their advantages and disadvantages. Of these two, the entropy bottleneck is the
most flexible at modeling arbitrary distributions. Indeed, it often does, modeling many channels
via Laplacian-like distributions, which the latent representations often tend towards. However,
because all elements within a given channel are modelled using the same distribution, it is quite
poor at specializing and adapting to specific input distributions. Instead, it models a “conservative”
distribution that tries to encompass all possible inputs, which is often suboptimal, as visualized in
Fig. 2.1. This is sometimes known as the amortization gap [35], [36]. In contrast, the Gaussian
conditional is better at adapting to a specific input, though it is limited to modeling Gaussian
distributions. Furthermore, it must also pay an additional cost for transmitting the distribution
parameters, though this is often worth the trade-off, e.g., a savings of roughly 40% for a 10% increase
in rate, as shown by [24].

Figure 2.1: Visualization of the suboptimality of using a single static encoding distribution. This distribution
tries to “average” (in an amortized information-theoretic sense) all the best possible data-specific distributions.
However, the resulting distribution is less optimal than data-specific distributions.

In their “scale hyperprior” architecture, Ballé et al. [24] utilize an entropy bottleneck to compress
the latent representation z = ha(y). This is known as “side-information”, and its compressed
bitstream is transmitted before the bitstream for y. The reconstructed latent ẑ is then used to determine
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the parameters1 µ and σ of a Gaussian conditional distribution which is used to reconstruct ŷ. More
sophisticated entropy models, such as ELIC [4] use multiple successive applications of the Gaussian
conditional entropy model, alongside an entropy bottleneck functioning as a “scale hyperprior”. In
many such models that utilize the scale hyperprior, the rate usage of the entropy bottleneck often
comprises roughly 10% of the total rate. Evidently, the entropy bottleneck is a key component
of many state-of-the-art (SOTA) image compression models, and so it is important to address the
amortization gap suffered by the entropy bottleneck.

In this chapter, we propose a method to address this amortization gap via the compression of an
input-specific probability distribution. This allows the entropy bottleneck method to adapt to the
input distribution, rather than using a fixed dataset-optimized probability distribution which suffers
from the amortization gap. We demonstrate that our input-adaptive method can be used by models
containing the entropy bottleneck in order to achieve better rate-distortion performance.

2.2 Related works

In Campos et al. [37], the latent y is refined by performing gradient descent to optimize it, while
holding the trained model parameters fixed. This is effectively a form of Rate-Distortion Optimized
Quantization (RDOQ), though the optimized loss L = Rỹ + λxD(x, x̃) is not precisely aware of the
exact effect of quantization.

Balcilar et al. [35] propose non-learned methods for the compression and transmission of the
encoding distributions. For the factorized entropy model, they first measure a discrete histogram
of the c-th latent channel. Then, they construct an approximation of the histogram using a K-
Gaussian mixture model parameterized by w(k), µ(k), and σ(k). The aforementioned parameters
are compactly encoded into 8 bits each, and transmitted. That is, for a model using C activated
channels, (3K − 1) · C · 8 bits are required to transmit the parameters. (Typically, K ∈ [1, 3] is
used, and C ∈ [16, 192] for low-rate models.) The approximation model is then used as the encoding
distribution pŷ(ŷc) =

∑K
k=1 wk N̂ (ŷc; µk, σk

2). For the Gaussian conditional entropy model, they
instead transmit a factor β(c) that corrects the error in the center (and most likely) bin’s probability. A
key difference between our work and this prior work is that we formulate a learnable method for the
compression of the encoding distribution.

Galpin et al. [16] introduce a lightweight non-learned context model for raster-scan ordered
encoding, similar to Minnen et al. [2]. They also implement a simple raster-scan ordered greedy
RDOQ method which repeatedly reruns the decoder on the quantized y hat to discretely optimize the
loss. To reduce the computational cost of the RDOQ process, the loss estimation is restricted within
the receptive field (a 9 × 9 latent window) and only delta y hat in {−1, 0, +1} is explored. They then
compare their proposed methods in conjunction with [35], [37] in various configurations on both the
standard factorized model and its GDN to ReLU replacement model variant.

1In their initial publication, µ is fixed to 0, though later results [2] show that it is better to predict µ as well.
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2.3 Proposed method

2.3.1 Compression of probability distributions

Let x be an input image, and y = ga(x) be its transformed latent representation. Consider a
fully-factorized entropy model [24], which models ŷ = Quantize[y] using a single channel-specific
non-parametric probability distribution p̂j for each channel j. Since all elements within a given
channel are modelled using the same distribution, in this setting, the “true” probability distribution
pj for the j-th channel of y can be determined exactly by computing the normalized histogram of
ŷj . The true distribution for the j-th channel is also the encoding distribution p̂j with the minimum
rate cost for encoding a specific latent representation ŷ using the entropy model. That is, the ideal
encoding distribution p̂∗

j is given by

p̂∗
j = arg min

p̂j

[
H(pj) + DKL(pj ∥ p̂j)

]
=⇒ p̂∗

j = pj .

Unfortunately, using the true distribution p for encoding is infeasible, since the decoder does not have
access to it. Instead, we propose a method that generates a reconstructed approximation p̂ that targets
p, subject to a rate trade-off. We discuss the specific loss function that is optimized in Section 2.3.4.

Fig. 2.2 visualizes the true (p) and reconstructed (p̂) (via our proposed method) probability
distributions for a fully-factorized entropy model. The left column shows various input images taken
from the Kodak test dataset [1] — except for the “(Default)” image in the first row, which is an abstract
“amortized” representation of all possible input images that may be randomly drawn from the training
dataset distribution. The middle column and right columns visualize the negative log-likelihoods of
the true and reconstructed probability distributions, respectively. Each probability distribution is
visualized as a 2D color plot, where

(i) the x-coordinate is the channel index j of the latent y,
(ii) the y-coordinate is the bin index i of the discretized probability distribution, and
(iii) the z-coordinate (i.e., color intensity) is the negative log-likelihood (in bits) of (pj)i or (p̂j)i,

clipped to the range [0, 10].
Evidently, the default amortized dataset-optimized probability distribution is conservative and

encompasses each of the image probability distributions. However, trying to cover all possible
distributions with a single distribution leads to suboptimal compression performance since that
distribution does not match each individual input distribution sufficiently well. In contrast, with our
probability distribution compression method, the encoding distribution has adapted to the probability
distributions for each image. Indeed, the true and reconstructed probability distributions look visually
quite similar. This is particularly true for high-probability regions of the true distribution, which is
also where accurate reconstruction is most important. For less probable regions, there is sometimes
a larger mismatch between p and p̂, though this is less important, since incorrect prediction of
low-probability regions has a smaller impact on the overall rate. This indicates that our method
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Figure 2.2: Different images from the Kodak dataset, and their corresponding negative log-likelihoods (in
bits) of the true and reconstructed probability distributions.
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Figure 2.2: (continued)
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Figure 2.2: (continued)
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is capable of adapting to the input distribution well, and in a way that is cognizant of the tradeoff
between rates.

2.3.2 Architecture overview

Figure 2.3: Adaptive probability distribution compression architecture.

Our proposed method applied to the traditional “fully-factorized” architecture [24] is visualized
in Fig. 2.3. In this configuration, the latent representation y is first passed through the histogram
layer described in Section 2.3.3, which estimates the target distribution p. Then, p is passed through
a distribution compression architecture consisting of the analysis transform ha,q which generates a
latent representation q, followed by an entropy model (e.g. entropy bottleneck), and then finally a
synthesis transform hs,q which reconstructs the distribution p̂. The rate cost of encoding q is labelled
Rq, and the rate cost of encoding y using p̂ is labelled Ry.

2.3.3 Histogram estimation

In the entropy bottleneck, the probability distribution for a given channel is fixed, regardless of the
input. In order to adapt this distribution to the input, we must first estimate the input distribution
more accurately. We do so by estimating the input distribution using a histogram. In order to ensure
differentiability backwards through the histogram module, we use the method of kernel density
estimation (KDE).

Let [ymin, ymax] be a supporting domain that encompasses all values y1, y2, . . . , yN in a specific
channel. Let {b1, b2, . . . , bB} denote the bin centers of the B-bin histogram, where bi = ymin + i − 1.
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In the method of kernel density estimation, which is used to estimate the probability density function
from a set of observations, a kernel function is placed centered at each observed sample, and those
functions are summed to create the overall density function. To construct the histogram, we evaluate
the kernel density estimate at each bi. Or rather, we use an equivalent formulation where we instead
place a kernel function at each bin center, as visualized in Fig. 2.4. Then, the probability mass in the
i-th bin can be estimated as

(Histogram(y))i = 1
Normalization

N∑
n=1

K

(
yn − bi

∆b

)
,

where ∆b = bi+1 − bi is the bin width, and K(u) is the kernel function, which we choose to be the
triangular function

Ksoft(u) = max{0, 1 − |u|}.

Conveniently, the triangular kernel function ensures that the total mass of a single observation sums to
1 (which is shared between its surrounding bins). Thus, to ensure that the total mass of the histogram
under all N observations sums to 1, we may simply choose Normalization = N .

While the above provides a piecewise differentiable estimate of the histogram, it is also possible
to determine the exact hard histogram by using a rectangular kernel function, which allocates yn to
its nearest bin:

Khard(u) = rect(u) =

1 if |u| ≤ 1
2

0 otherwise.

We can then use the “straight-through” estimator (STE) [38] trick to get the benefits of both:

Histogram(y) = Histogramsoft(y) + detach(Histogramhard(y) − Histogramsoft(y)).

Thus, the hard histogram is used for the forward pass, and the differentiable soft histogram is
substituted for the backward pass (i.e., backpropagation).

2.3.4 Loss function

Our model follows the variational formulation based on [24]; further details on the construction
may be found in earlier works such as [39]–[41]. Briefly, for a variable y, its counterparts ỹ and ŷ

denote the noise-modelled (for training) and quantized (for inference) versions of y, respectively.
Furthermore, the variational encoder qϕ(ỹ, q̃ | x) with trainable parameters ϕ is a probabilistic2

model of the joint distribution for ỹ and q̃, for a given input x. The loss function that we seek to

2During training, the encoder is probabilistic in order to model quantization via uniform noise.
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Figure 2.4: Visualization of triangular kernel functions for estimating the discrete probability mass histogram.

minimize over the input data distribution px(x) can then be expressed as

L = Ex∼px(x) Eỹ,q̃∼qϕ(ỹ,q̃|x)
[
− log pỹ|q̃(ỹ | q̃) − λq log pq̃(q̃) + λxD(x, x̃)

]
= Ex∼px(x) [Rỹ(x) + λqRq̃(x) + λxD(x, x̃)] .

Here, Rỹ(x) and Rq̃(x) are the total rate costs of ỹ and q̃ for a given input x, respectively.
Furthermore, D(x, x̃) is a distortion metric — typically mean-squared error (MSE) — between the
input x and its reconstruction x̃. Additionally, λx is a trade-off hyperparameter between the rate and
distortion. And lastly, λq is a trade-off hyperparameter between the rate cost of encoding q̃ against
the amount of rate saved when using q̃ to encode ỹ.

The choice for λq depends upon the ratio between the target and trained-upon input dimensions:

λq = Hx,trainedWx,trained
Hx,targetWx,target

.

For instance, for the target dimension of 768 × 512 (i.e., images from the Kodak test dataset) and
a trained-upon dimension of 256 × 256 (i.e., image patches from the Vimeo-90K dataset), we set
λq = 1

6 .
Let pj = (pj1, . . . , pjB) refer to the discrete B-bin probability distribution used to encode the

j-th channel of ỹ. Then concretely, the rate cost of ỹ may be measured by the cross-entropy between
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the true and reconstructed3 discretized distributions,

Rỹ =
M∑

j=1

B∑
i=1

−pji log p̂ji.

Similarly, let q̃j denote the j-th channel of q̃. Then, the rate cost of q̃ is measured by the typical
calculation,

Rq̃ =
M∑

j=1

length(lj)∑
i=1

−lji log lji, where lj = pq̃j
(q̃j).

2.3.5 Optimization

We will now compute the derivatives for our proposed method. To simplify the notation, within this
subsection, we will focus on a single channel — the j-th channel — and directly denote ỹj as y, and
pj as p. Recall that from the perspective of the backward pass,

pi = (Histogram(y))i

= 1
HW/s2

∑
n

Ksoft

(
yn − bi

∆b

)
= 1

HW/s2

∑
n

max
{

0, 1 −
∣∣∣∣yn − bi

∆b

∣∣∣∣} ,

where s is the downscale factor (e.g., s = 24 = 16 for a model with four downscaling strides of
length 2), and H and W are the height and width of the input image x, respectively. And so,

∂pi

∂yk
= 1

HW/s2

∑
n

∂

∂yk

[
max

{
0, 1 −

∣∣∣∣yn − bi

∆b

∣∣∣∣}]
= 1

HW/s2
∂

∂yk

[
max

{
0, 1 −

∣∣∣∣yk − bi

∆b

∣∣∣∣}]
= 1

HW/s2 · −1
∆b

· H

(
1 −

∣∣∣∣yk − bi

∆b

∣∣∣∣)︸ ︷︷ ︸
1 if |yk−bi|<∆b else 0

·
(

2 · H

(
yk − bi

∆b

)
− 1

)
︸ ︷︷ ︸

−1 if yk<bi else 1

,

since
∂

∂u
max{0, 1 − |u|} = −H(1 − |u|) · [2 · H(u) − 1].

3Since the reconstructed distribution is determined directly from y rather than from ỹ, we denote it by p̂, not p̃.
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The corresponding derivative for the reconstructed distribution p̂ may be determined as

∂p̂i

∂yk
=
∑

l

∂p̂i

∂pl

∂pl

∂yk

≈
∑

l

δil
∂pl

∂yk
assuming

∂p̂i

∂pl
≈ δil

= ∂pi

∂yk
,

where we have assumed that the dominant term in the sum is the term where l = i.
The rate cost of encoding the channel y with its associated discrete probability distribution p is

given by

Ry = HW

s2

∑
i

−pi log p̂i.

Then, we may compute the derivative as follows:

∂Ry

∂yk
= −HW

s2

∑
i

∂

∂yk
[pi log p̂i]

= −HW

s2

∑
i

[
pi

∂

∂yk
[log p̂i] + ∂pi

∂yk
log p̂i

]
= −HW

s2

∑
i

[
pi

p̂i

∂p̂i

∂yk
+ ∂pi

∂yk
log p̂i

]
≈ −HW

s2

∑
i

[
pi

p̂i

∂pi

∂yk
+ ∂pi

∂yk
log p̂i

]
assuming

∂p̂i

∂yk
≈ ∂pi

∂yk

= −HW

s2

∑
i

[
pi

p̂i
+ log p̂i

]
∂pi

∂yk

= −1
∆b

∑
i

[
pi

p̂i
+ log p̂i

]
· H

(
1 −

∣∣∣∣yk − bi

∆b

∣∣∣∣) ·
(

1 − 2 · H

(
yk − bi

∆b

))

= −1
∆b

([
pi

p̂i
+ log p̂i

]
i=⌈yk−ymin⌉+1

−
[

pi

p̂i
+ log p̂i

]
i=⌊yk−ymin⌋+1

)

≈ −1
∆b

(
log p̂⌈yk−ymin⌉+1 − log p̂⌊yk−ymin⌋+1

)
assuming p̂i ≈ pi.

(2.1)

Thus, assuming that p̂i ≈ pi and ∂p̂i
∂yk

≈ ∂pi
∂yk

, the gradient of the rate cost Ry is directly proportional
to the difference in code lengths of the two bins whose centers are nearest to the value yk. Intuitively,
this makes sense, since the rate cost of encoding the k-th element is directly proportional to the linear
interpolation between the code lengths of the two nearest bins:

Ryk
= −

[
α · log p̂⌊yk−ymin⌋+1 + (1 − α) · log p̂⌈yk−ymin⌉+1

]
,

where α = (yk − b⌊yk−ymin⌋+1)/∆b = 1 − (b⌈yk−ymin⌉+1 − yk)/∆b. The linear interpolation may
be justified by the fact that ŷk inhabits only a single bin at a time. The probability of ŷk inhabiting
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the left bin is α, and the probability of inhabiting the right bin is 1 − α. This aligns perfectly with
Shannon’s measure of entropy, which is the expected value of the code length. (Isn’t math elegant?)

For comparison, the standard “entropy bottleneck” represents the likelihood of a symbol by

p(y) = c

(
y + 1

2

)
− c

(
y − 1

2

)
=
∫ y+ 1

2

y− 1
2

f(t) dt,

where c is the cumulative distribution function of the encoding distribution, and f(y) = d
dy c(y) is

the probability density function of the encoding distribution. Then, the rate cost for the “entropy
bottleneck” is merely the sum of the negative log-likelihoods (i.e., code lengths),

Ry =
∑

i

− log p(yi).

We may then compute its derivative as follows:

∂Ry

∂yk
= −

∑
i

∂

∂yk
[log p(yi)]

= − ∂

∂yk
[log p(yk)]

= − 1
p(yk) · ∂

∂yk
[p(yk)]

= − 1
p(yk) ·

[
f

(
yk + 1

2

)
− f

(
yk − 1

2

)]
.

(2.2)

Interestingly, whereas the derivative for the proposed method (under the assumption that p̂i ≈ pi)
computed in (2.1) contains a difference between the “right” and “left” log-likelihoods, the derivative
for the standard method computed in (2.2) contains a difference between the “right” and “left”
evaluations of the probability density function.

2.4 Experimental setup

2.4.1 Architecture details

As shown in Fig. 2.5, our ha,q and hs,q are implemented using a simple five-layer convolutional
neural network. In between each of the convolutional layers shown is a ReLU activation function,
as well as a channel shuffle operation, as is done in ShuffleNet [42]. There are two strides of
length 2, resulting in a total downscaling factor of sq = 4. For all our models, we set K = 15 to
control the kernel sizes, and G = 8 to control the number of channel groups. Furthermore, we set
(Nq, Mq) = (32, 16) for low-resolution models, and (Nq, Mq) = (64, 32) for high-resolution models.
The number of bins B is set between 128 and 1024 across different models. We have elected to use
an entropy bottleneck design for simplicity, though one can likely further improve the compression
performance of the probability distribution compression architecture by using more powerful entropy
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modeling techniques (e.g., a scale hyperprior). Since λq is a parameter that depends on the ratio
between the target and trained-upon input dimensions, it may also be advisable to train a single model
which that supports λ-rate control strategies (e.g., G-VAE [43], [44] and QVRF [45]) for both latent
representations y, q. However, we have not yet explored this possibility.

Figure 2.5: Architecture layer diagram for ha,q and hs,q transforms. k denotes kernel size, g denotes number
of channel groups, and ↓, ↑ denote stride.

2.4.2 Training details

Our models are trained on 256 × 256 image patches from the Vimeo-90K triplet dataset [46]. A
training batch size of 16 was used, along with the Adam optimizer [47] with an initial learning rate of
10−4 that was decayed by a factor of 0.1 whenever the validation loss plateaued. Specifically, we
loaded the weights of the pretrained models from CompressAI [25], which were also trained using
the same setup as above. We replaced the static distributions of the EntropyBottleneck module
with the dynamically generated adaptive distributions from our proposed probability distribution
compression module. Then, we froze the weights for ga and gs, and trained only the weights for
our probability distribution compression model (i.e., for ha,q and hs,q, and the entropy model for q).
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Finally, we evaluated our models on the standard Kodak test dataset [1] containing 24 images of size
768 × 512. (Thus, we set λq = 1

6 during training.)

2.5 Experimental results

Fig. 2.6 shows the rate-distortion (RD) curves comparing a given base model against the same model
enhanced with our proposed probability distribution compression module.
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Figure 2.6: RD curves for the Kodak dataset.

In Table 2.1, we compare the rate savings of our proposed method against the base model at various
quality levels. Additionally, we also list the maximum rate savings that can be theoretically achieved
by perfectly eliminating the amortization gap between the true and reconstructed distributions, i.e., by
using the true distribution directly as the encoding distribution with zero additional transmission cost.
As shown, our approach achieves a 6.95% BD-rate reduction over the base model, in comparison to a
maximum possible reduction of 8.33% BD-rate reduction achievable by perfectly eliminating the
amortization gap.

In order to compute the potential savings, we first ran the base model on each image from the
Kodak test dataset [1], giving us a collection of true distributions p for each image. Furthermore, the
base model provides a static encoding distribution pdefault. Then, we computed the potential savings
(in bpp) for each image as (∆R)max = HW/s2

HW

∑
j DKL(pj ∥ (pdefault)j). We then averaged these

values across the entire dataset.
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Table 2.1: Potential and achieved rate savings for the bmshj2018-factorized model [24] when equipped with
our proposed distribution compression method.

Quality Original
(bpp)

Potential
gain (bpp)

Potential
BD-rate

Our
(bpp)

Our gain
(bpp)

Our
BD-rate

1 0.122 -0.012 -9.45 0.113 -0.009 -7.66
2 0.188 -0.016 -8.66 0.175 -0.013 -7.13
3 0.287 -0.024 -8.20 0.268 -0.019 -6.76
4 0.440 -0.035 -7.90 0.411 -0.029 -6.57
5 0.647 -0.051 -7.83 0.605 -0.043 -6.57
6 0.965 -0.080 -8.25 0.898 -0.067 -6.95
7 1.349 -0.111 -8.24 1.254 -0.095 -7.04
8 1.830 -0.149 -8.14 1.705 -0.126 -6.88

mean -8.33 -6.95

In Table 2.2, we compare the rate savings for various base models equipped with a distribution
compression method. “Ratio” is the fraction of the total rate occupied by the original unmodified
model. “Gap” is the maximum potential rate gain with perfect distribution reconstruction and zero
additional transmission cost. “Gain” is the actual rate gain achieved by the given model. All models
are evaluated on the Kodak dataset [1].

Table 2.2: Comparison of rate savings for various models.

Model Quality

Factorized Total

Ratio
(%)

Gap
(%)

Gain
(%)

Gain
(%)

bmshj2018-factorized [24] + Balcilar2022 [35] 1 100 -9.45 -6.79 -6.79
bmshj2018-factorized [24] + ours 1 100 -9.45 -7.66 -7.66
bmshj2018-factorized [24] + ours * 100 -8.33 -6.95 -6.95

Table 2.3 reports the number of trainable parameters and the number of multiply-accumulate
operations (MACs) per pixel for various model configurations. The results are calculated assuming
an input image size of 768 × 512, and a latent representation size of 48 × 32. As shown, our model
requires far fewer parameters and MACs/pixel than the comparable scale hyperprior [24] model. In
particular, for comparable configurations, our method’s ha,q and hs,q transforms require 96–97%
fewer parameters and 96–99% fewer MACs/pixel than the scale hyperprior’s ha and hs transforms.
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Table 2.3: Trainable parameter counts and number of multiply-accumulate operations (MACs) per pixel.

Model configuration Params MACs/pixel Params MACs/pixel

(My, Nq, Mq, K, G, B) ha,q hs,q

Ours (192, 32, 16, 15, 8, 256) 0.029M 10 0.029M 10
Ours (320, 64, 32, 15, 8, 1024) 0.097M 126 0.097M 126

(N, M) ha hs

bmshj2018-hyperprior [24] (128, 192) 1.040M 1364 1.040M 1364
bmshj2018-hyperprior [24] (192, 320) 2.396M 3285 2.396M 3285

2.6 Conclusion

In this chapter, we proposed a learned method for the compression of probability distributions.
Our method effectively measures and compresses the encoding distributions used by the entropy
bottleneck. The experiments we performed where we only trained the distribution compression
component show that this method is effective at significantly reducing the amortization gap. Since
many learned compression models use the entropy bottleneck component, our method provides them
with a low-cost potential improvement in bitrate. Furthermore, our work opens up the possibility of
using learned distribution compression as a paradigm for correcting encoding distributions.

2.6.1 Future work

A few steps remain towards making probability distribution corrective methods viable parts of more
advanced entropy models such as [3], [4], [24]. These include the following:

• The proposed adaptive entropy bottleneck needs to be formulated in such a way that it can be
trained fully end-to-end. When training a pretrained base model equipped with our adaptive
distribution compression module, we found that unfreezing the pretrained transform weights
led to a degradation in RD performance. In contrast, keeping the transform frozen led to
improvements in RD performance. This suggests that the rate-minimizing gradients flowing
backwards into the transform through our adaptive distribution compression module are not
necessarily well-formulated.

• Application of our adaptive distribution method to the Gaussian conditional component of
entropy models. This component (along with the entropy bottleneck) is used to construct
entropy modeling methods such as those used in [3], [4], [24]. Most SOTA learned image
compression models predict the parameters of the Gaussian or Gaussian mixture encoding
distributions using various sophisticated methods. However, in all such models, the focus has
been on optimizing the location and scale of the fixed Gaussian-shaped distributions. Thus,
there are potential rate improvements to be made by adapting the shapes of the encoding
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distributions to shapes that more closely match the data distribution. (One such effort is
Gaussian-Laplacian-Logistic Mixture Model (GLLMM) proposed in [48].) One way to directly
apply our adaptive distribution method to Gaussian distributions would be to discretize them
and then run the result through a distribution compression model.
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Chapter 3

Point cloud compression for classification

Deep learning is increasingly being used to perform machine vision tasks such as classification,
object detection, and segmentation on 3D point cloud data. However, deep learning inference is
computationally expensive. The limited computational capabilities of end devices thus necessitate a
codec for transmitting point cloud data over the network for server-side processing. Such a codec
must be lightweight and capable of achieving high compression ratios without sacrificing accuracy.
Motivated by this, we present a novel point cloud codec that is highly specialized for the machine task
of classification. Our codec, based on PointNet, achieves a significantly better rate-accuracy trade-off
in comparison to alternative methods. In particular, it achieves a 94% reduction in BD-bitrate over
non-specialized codecs on the ModelNet40 dataset. For low-resource end devices, we also propose
two lightweight configurations of our encoder that achieve similar BD-bitrate reductions of 93% and
92% with 3% and 5% drops in top-1 accuracy, while consuming only 0.470 and 0.048 encoder-side
kMACs/point, respectively. Our codec demonstrates the potential of specialized codecs for machine
analysis of point clouds, and provides a basis for extension to more complex tasks and datasets in the
future. This chapter has been presented as [28].

3.1 Introduction

Point clouds are used to represent 3D visual data in many applications, including autonomous driving,
robotics, and augmented reality. Recent advances in deep learning have led to the development
of deep learning-based methods for machine vision tasks on point cloud data. Common tasks
include classification, segmentation, object detection, and object tracking. However, current deep
learning-based methods often require significant computational resources, which impose hardware
requirements. Such significant requirements may not be physically or economically feasible for end
devices.

One approach to address the issue of insufficient end-device computational resources is to
transmit the point cloud and other sensor data to a server for processing. However, this introduces its
own challenges, including the effects of network availability, latency, and bandwidth. In order to
reduce network requirements, the end device may compress the point cloud data before transmission.
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However, network capabilities vary depending on various factors, including end-device location and
network congestion. This means that sufficient bandwidth may still not be available to transmit the
point cloud data. A hybrid strategy is to perform part of the machine task on the end device itself.
This can reduce the amount of data that needs to be transmitted to the server for further processing,
without exceeding the computational budget of the end device [49]. This enhances the robustness of
the end device to varying network conditions, while potentially improving overall system latency and
adaptability [50].

We propose a novel learned point cloud codec for classification. Our learned codec takes a point
cloud as input, and outputs a highly compressed representation that is intended solely for machine
analysis. To our knowledge, this is the first point cloud codec specialized for machine analysis.
Existing codecs for point clouds are designed to reconstruct point clouds intended for human viewing.
This means that a significant amount of bits is wasted on encoding information that is not strictly
relevant to machine analysis. By partially processing the point cloud before compression, our codec
is able to achieve significantly better compression performance, without compromising task accuracy.

In this chapter, we present our task-specialized codec architecture in full and lightweight
configurations. We evaluate its rate-accuracy (RA) performance on the ModelNet40 dataset [51].
We also investigate how the number of input points (and thus reduced computation) affects the RA
performance of our proposed codec. Furthermore, we compare our proposed codec’s performance
against alternative non-specialized methods. Our code for training and evaluation is available online1.

3.2 Related work

Point cloud classification models can be organized into groups based on the type of input data they
accept. Models such as VoxNet [52] take as input point clouds that have been preprocessed into
a voxel grid. Unfortunately, these methods often use 3D convolutions, which require a significant
amount of computational resources. Additionally, since most voxels are usually empty, these methods
arguably waste a significant amount of computation on empty space. Furthermore, the voxel grid
representation is not very compact, and thus requires a significant amount of memory for higher
spatial resolutions (e.g., a 32-bit tensor of shape 1024 × 1024 × 1024 occupies 32 GB). Models such
as OctNet [53] take octrees as input. Octrees offer a more compact representation of the voxelized
point cloud by encoding the node occupancy in bitstrings. Large unoccupied regions of space may
be represented via a single “0” node in an octree. Point-based models such as PointNet [54] and
PointNet++ [55] directly accept raw point lists (x1, x2, . . . , xP ), where xi ∈ R3 represents a point in
a 3D space and P is the number of points. Some challenges faced with this input format include
designing order-invariant models (due to the lack of a worthwhile canonical ordering of points), as
well as in devising operations capable of using the metric structure induced by point locality. Despite

1 https://github.com/multimedialabsfu/learned-point-cloud-compression-for-classification
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the challenges, point-based models are able to achieve surprisingly competitive accuracy, and offer
the most promise in terms of minimizing computational requirements.

PointNet [54], which our proposed architecture is based on, can be represented as an input
permutation-invariant function:

f(x1, . . . , xn) = (γ ◦ π)(h(x1), . . . , h(xn)),

where h is applied to each point xi individually, π is a simple permutation-invariant function, and γ

may be any function. In the original PointNet architecture, h is a weight-shared MLP, π is a max
pooling function applied across the point dimension, and γ is an MLP.

In the related field of learned image compression, Ballé et al. [24] proposed a variational
autoencoder (VAE) architecture for image compression. Here, the model transforms the input x into
a latent representation y, which is then quantized into ŷ and losslessly compressed using a learned
entropy model. The codec is trained end-to-end using the loss function

L = R + λ · D(x, x̂), (3.1)

where D(x, x̂) is the distortion measure between input x and decoded x̂, and R is the estimate of
the entropy of ŷ. One simple entropy model, known in the literature as an entropy bottleneck, makes
a “factorized” prior assumption — that each element within a latent channel is independently and
identically distributed. It models a monotonically increasing non-parametric cumulative distribution
function using a differentiable MLP. This mechanism has also shown effectiveness in learned codecs
in other fields, including learned point cloud compression (PCC), and has been incorporated by a
variety of works including [7]–[11].

We have also based our work on ideas introduced for machine tasks on images. Early works
demonstrated the use of standard codecs in compressing the latent features [56]. More recently,
approaches such as Video Coding for Machines (VCM) [20] and Coding for Machines (CfM) have
gained traction in the research community. For instance, works such as [22], [57] demonstrate
the potential bitrate savings of scalable image compression in a multi-task scenario for a machine
vision task (e.g., facial landmark detection, or object detection) and human vision (e.g., image
reconstruction). In this work, we focus solely on a single machine vision task applied to point cloud
data.

3.3 Proposed codec

3.3.1 Input compression

In Fig. 3.1a, we show an abstract representation of an input codec, similar to the “chain” configuration
explored by [58] for end-to-end image compression for machines. In this codec, the input point cloud
x is encoded directly, without any intermediate feature extraction. On the decoder side, the point
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(a) input compression

(b) proposed

Figure 3.1: High-level comparison of codec architectures.

cloud is then reconstructed as x̂. Any point cloud compression codec can be used for this purpose,
including standard non-learned codecs such as G-PCC [59]. Finally, the reconstructed point cloud
x̂ is fed into a classification model (e.g., PointNet) in order to obtain the class prediction t̂. This
approach provides a baseline for comparison with our proposed codec.

3.3.2 Motivation for the proposed codec

An efficient task-specific codec can be developed using the concept of Information Bottleneck
(IB) [60]:

min
p(ŷ|x)

I(x; ŷ) − β · I(ŷ; t̂), (3.2)

where I(·; ·) is the mutual information [61], p(ŷ | x) is the mapping from the input point cloud x to
the latent representation ŷ, and β > 0 is the IB Lagrange multiplier [60]. We can think of p(ŷ | x)
as feature extraction followed by quantization. Hence, ŷ is fully determined whenever x is given, so
H(ŷ | x) = 0, where H(· | ·) is the conditional entropy [61]. Therefore, I(x; ŷ) = H(ŷ) − H(ŷ |
x) = H(ŷ).

Furthermore, since decreasing −β · I(ŷ; t̂) would improve the accuracy of the task, we can use
λ · D(t, t̂) as a proxy for −β · I(ŷ; t̂), where t is the ground-truth label, t̂ is the label produced using
the compressed latent representation, and D(t, t̂) is a distortion measure. Therefore, in our case, the
IB (3.2) becomes:

min
p(ŷ|x)

H(ŷ) + λ · D(t, t̂). (3.3)

It is clear that the form of IB in (3.3) is analogous to the loss function (3.1). We make use of this
analogy to develop the proposed codec, which is described next.
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Figure 3.2: Proposed codec architecture.

3.3.3 Proposed architecture

In Fig. 3.1b, we show a high-level representation of our proposed codec architecture. Following
the terminology of [24], we refer to ga as the analysis transform, and gs as the synthesis transform.
In this architecture, the input point cloud x is first encoded into a latent representation y = ga(x),
which is then quantized as ŷ = Q(y), and then losslessly compressed using a learned entropy model.
Therefore, p(ŷ | x) from the IB is Q ◦ ga. Then, the reconstructed latent representation ŷ is used to
predict the classes t̂ = gs(ŷ).

Our proposed architecture, visualized in Fig. 3.2, is based on the PointNet [54] classification
model. The input 3D point cloud containing P points is represented as a matrix x ∈ R3×P . The
input x is fed into a sequence of encoder blocks. Each encoder block consists of a convolutional layer,
a batch normalization layer, and a ReLU activation. As described in [54], the early encoder blocks
must be applied to each input point independently and identically, in order to avoid learning input
permutation-specific dependencies. Therefore, we use pointwise convolutional layers with kernel
size 1, which are exactly equivalent to the “shared MLP” described in [54].

Following the sequence of encoder blocks, a max pooling operation is applied along the point
dimension to generate an input permutation-invariant feature vector of length N . The resulting
feature vector is then multiplied element-wise by a trainable gain vector v ∈ RN , which is initialized
to [1, 1, . . . , 1] before training. Due to the batch normalization layers, the resulting feature vector
has small values. Thus, in order to improve training stability and the rate of convergence, the
feature vector is multiplied by a constant scalar value of 10. The resulting vector is the output of the
encoder-side analysis transform, which we label as y.

Then, we quantize y via uniform quantization (specifically, integer rounding) to obtain ŷ. During
training, uniform quantization is simulated using additive uniform noise U(−0.5, 0.5). The quantized
vector ŷ is then losslessly encoded using a fully-factorized learned entropy model introduced in [24].

On the decoder side, the decoded vector ŷ is fed into an MLP consisting of fully-connected layers
interleaved with ReLU activations and batch normalizations. Before the last fully-connected layer, we
use a dropout layer that randomly sets 30% of its inputs to zero. The output of the MLP is a vector of
logits t̂ ∈ RT , where T is the number of classes.

We provide “full”, “lite”, and “micro” configurations of the proposed codec. For each con-
figuration, Table 3.1 lists the number of layer output channel sizes along with the estimated
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Table 3.1: Layer sizes and MAC counts for various proposed codec types.

Proposed Encoder Decoder Encoder Decoder
codec layer sizes layer sizes MAC/pt MAC

full 64 64 64 128 1024 512 256 40 150k 670k
lite 8 8 16 16/2 32/4 512 256 40 0.47k 160k

micro 16 512 256 40 0.048k 150k

MAC (multiply-accumulate) counts2. Group convolutional layers are specified in the format “out-
put_size/group”. In contrast to [54], we do not use any input or feature transformations in order to
simplify the architectures for clearer analysis, as well as to reduce the computational requirements.

3.3.4 Lightweight and micro architectures

In addition to our “full” proposed codec, we also provide a lightweight configuration, which we
denote as “lite”. In this architecture, the encoder-side layers contain fewer output channels. To further
reduce encoder-side computational costs, they also use group convolutions with channel shuffles in
between, as is done in ShuffleNet [42]. After training, the gain and batch normalization layers may
be fused into the preceding convolutional layer. The “lite” architecture strikes a balance between
RA performance and encoder complexity. In fact, the encoder-side transform requires only 0.47k
MACs/point, which is significantly less than the 150k MACs/point required by the “full” architecture
encoder. For input point clouds consisting of P = 256 points, the total MAC count for the “lite”
codec is 120k, which is below the corresponding decoder-side MAC count of 160k.

Additionally, we examine a “micro” architecture, whose encoder-side transform consists of only a
single encoder block with 16 output channels, and a max pooling operation. This codec is useful for
analysis and comparison — and yet, it is also capable of surprisingly competitive RA performance.

3.4 Experiments

Our models were trained on the ModelNet40 [51] dataset, which consists of 12311 different 3D
object models organized into 40 classes. We used an Adam optimizer with a learning rate of 0.001.
Our code was written using the PyTorch, CompressAI [25], and CompressAI Trainer [31] libraries.

The loss function that is minimized during training is:

L = R + λ · D(t, t̂),

where the rate R = − log pŷ(ŷ) is the log of the likelihoods outputted by the entropy model, and the
distortion D(t, t̂) is the cross-entropy between the one-hot encoded labels t and the softmax of the

2One MAC operation may be considered equivalent to a FLOP (floating-point operation) on most hardware.
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model’s prediction t̂. We trained different models to operate at different rate points by varying the
hyperparameter λ ∈ [10, 16000].

3.4.1 Proposed codec

For each of the proposed codec architectures, we trained a variation of each codec to accept an input
point cloud containing P ∈ P points. We trained eight such variations for each of the values in the
set P = {8, 16, 32, 64, 128, 256, 512, 1024}. Although each codec is capable of handling a variable
number of points, training a separate model for each P guarantees that each codec is well-optimized
for each rate-accuracy trade-off.

3.4.2 Input compression codec

We compare our proposed codec against an “input compression” codec architecture. For this codec,
the encoder may be taken from any point cloud codec. We have tested multiple codecs, including
TMC13 [62] v14 (an implementation of the G-PCC v2 [59] standard), OctAttention [10], and
Draco [63]. On the decoder side is the corresponding point cloud decoder, followed by a PointNet
classification model. We trained a PointNet model (without the input and feature transforms) for each
P ∈ P .

We generated eight separate datasets of P -point point clouds, where each point cloud was
uniformly subsampled from the test dataset. Then, we compressed and decompressed each point
cloud from each P -point dataset at various compression ratios. The compression ratio can be
effectively controlled by varying the amount of input scaling, which we denote by S. (The input
scaling parameter is directly proportional to the number of bins used during uniform quantization
of the input points.) We varied S over the set S = {1, 2, 4, . . . , 256} and P over P to produce
|P| · |S| distinct datasets. We evaluated each dataset associated with the pair (P, S) ∈ P × S on the
correspondingly trained PointNet models to obtain a set of rate-accuracy points. Finally, we took the
Pareto front of this set to obtain the best rate-accuracy curve achieved by the tested input compression
codec.

3.4.3 Reconstruction

In order to visually assess the contents of the machine task-specialized bitstream, we trained a point
cloud reconstruction network on top of our trained models. This auxiliary network was trained to
minimize the loss function L = D(x, x̂), where we used Chamfer distance for D.

We also identify a critical point set for a fixed point cloud. A critical point set is a minimal set of
points which generate the exact same latent y, and correspondingly, the same bitstream. Formally,
for any given point cloud x, let xC ⊆ x denote a (not necessarily unique) critical point set. Then,
ga(xC) = ga(x) = y, and there is uniquely one valid critical point set (xC)C for xC , and it is
itself. Since ga contains a max pooling operation, the critical point set is not theoretically unique;
however, in practice, it is rare for there to be more than one critical point set. A critical point set may
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be computed by xC =
⋃

1≤j≤N arg maxxi∈x (h(xi))j , where {h(xi) : 1 ≤ i ≤ P} represents the
entire set of generated latent vectors immediately preceding max pooling.

3.5 Results

Fig. 3.3 shows the rate-accuracy (RA) curves for the proposed “full”, “lite”, and “micro” codecs in
comparison with the input compression codec. Also included are two baseline accuracies taken from
the official PointNet paper [54], for the model with (89.2%) and without (87.1%) the input/feature
transforms. Since our compression models were all trained without the input/feature transforms, the
lower baseline offers a more direct comparison. In Table 3.2, we list the peak accuracies attained by
each codec, as well as the Bjøntegaard-Delta (BD) [64] improvements in rates and accuracies relative
to the reference input compression codec.

Our “full” proposed codec, which is an extension of PointNet (no transforms), achieves the
lower baseline accuracy at 120 bits, and an 80% accuracy at 30 bits. Our “lite” proposed codec
saturates in RA performance at around P = 512 input points. At around P = 256, the total MAC
count of the proposed “lite” encoder is roughly equal to the decoder. As shown by the rate-accuracy
curves, the P = 256 model does not suffer too significant a drop in rate-accuracy performance. This
suggests that our method is capable of achieving a good trade-off between rate, accuracy, and runtime
performance. Similarly, our “micro” codec suffers a further slight drop in rate-accuracy performance,
but achieves another significant improvement in runtime performance. The input compression codec
is the worst performing codec, and attains the lower baseline accuracy at roughly 2000 bits.

In Fig. 3.4, we show various point clouds that have been reconstructed from the bitstreams
generated by our proposed codecs. For each codec, we include samples reconstructed from bitstreams
compressed at different rates. Above each reconstructed point cloud, we show the corresponding
reference point cloud, with critical points marked in red.
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Figure 3.3: Rate-accuracy curves evaluated on the ModelNet40 test set.
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Table 3.2: BD metrics and max attainable accuracies per codec.

Codec Max acc (%) BD rate (rel %) BD acc (%)

Input compression

TMC13 [62] 88.5 0.0 0.0
OctAttention [10] 88.4 -13.2 +2.1
IPDAE [11] 87.0 -23.0 +3.6
Draco [63] 88.3 +780.7 -4.2

Proposed (full)

P = 1024 88.5 -93.8 +16.4
P = 512 88.0 -93.7 +15.9
P = 256 87.6 -93.3 +15.4
P = 128 87.1 -92.7 +14.9
P = 64 86.1 -91.1 +13.2
P = 32 81.8 -90.6 +9.3
P = 16 70.4 -86.8 -2.3
P = 8 46.8 -88.5 -25.3

Proposed (lite)

P = 1024 85.0 -93.0 +13.5
P = 512 85.5 -92.8 +14.2
P = 256 84.4 -92.4 +12.8
P = 128 84.0 -91.6 +12.5
P = 64 81.3 -88.5 +9.8
P = 32 76.3 -88.7 +4.9
P = 16 66.2 -86.1 -4.1
P = 8 43.6 -90.2 -28.0

Proposed (micro)

P = 1024 83.6 -91.8 +12.7
P = 512 82.5 -91.6 +11.6
P = 256 81.6 -91.1 +11.0
P = 128 80.1 -90.9 +9.9
P = 64 76.6 -89.9 +6.5
P = 32 70.3 -89.0 +0.1
P = 16 59.4 -87.6 -10.8
P = 8 41.9 -88.3 -28.8

P is the number of points in the input x. The BD metrics were
computed using the TMC13 input compression codec as the reference
anchor.
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(a) “full” codec
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Figure 3.4: Reconstructions of a sample airplane 3D model from the ModelNet40 test set for various codecs
and bitrates. For each reconstruction, its corresponding reference point cloud is marked with critical points in
red.
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3.6 Discussion

For input point clouds containing P = 1024 points, our “full”, “lite”, and “micro” codec configurations
achieve an accuracy of 80% with as few as 30, 40, and 50 bits. For comparison, log2(40) ≈ 5.3
bits are required to losslessly encode uniformly distributed class labels of the 40 classes from
ModelNet40. Our codec comes surprisingly close to this theoretical lower bound, despite the fact
that our architecture design omits the traditional MLP “classifier” within the encoder. The same
pointwise function is applied to all points, and the only operation that “mixes” information between
the points is a pooling operation. This suggests that our encoder should possess limited classification
abilities, and yet it consumes only a few times more bits than the theoretical lower bound.

To put this into perspective, consider coding for image classification, which is one of the best
developed areas in the field of coding for machines. Current state-of-the-art (SOTA) approaches [65]–
[67] for coding for image classification on ImageNet [68] require upwards of 0.01 bits per pixel (bpp)
to maintain a reasonable top-1 accuracy. With the typical input image resolution of 224 × 224, this
works out to be around 500 bits. However, the maximum classifier output entropy with 1000 classes
is only log2(1000) ≈ 10 bits, which is several orders of magnitude lower. Hence, the gap between
the current SOTA and theoretical limits on coding for image classification is much higher than what
is achieved by our proposed codec for point cloud classification.

To explore why our codec comes so close to the theoretical lower bound, we propose the following
arguments. Let x represent a possible input point cloud, and let ŷ = (Q ◦ ga)(x) be its quantized
transformed latent representation. Applying the data processing inequality to the Markov chain
x → x → ŷ, we determine that I(x; x) ≥ I(x; ŷ). Furthermore, since Q ◦ ga is deterministic,
H(ŷ | x) = 0, and so

H(x) = I(x; x) ≥ I(x; ŷ) = H(ŷ) − H(ŷ | x) = H(ŷ).

This indicates theoretically that the quantized latent representation ŷ must on average be at least as
compressible as the input point cloud x that it was derived from.

Since the critical point set xC ⊆ x produces the exact same ŷ as the original input point cloud x,
we may use the same arguments as above to argue that

H(x) ≥ H(xC) ≥ H(ŷ).

This provides us with a potentially tighter bound. In fact, as shown in Fig. 3.4iii, much of the
general shape of the shown sample point cloud can be reconstructed from only 23 bits of information.
Furthermore, since |xC | ≤ N , there are only at most 32 and 16 distinct critical points for the “lite”
and “micro” codecs, respectively. This suggests part of the reason for why our proposed codec
achieves such big gains in comparison to input compression.
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3.7 Conclusion

In this chapter, we proposed a new codec for point cloud classification. Our experiments demonstrated
that the “full” configuration of the codec achieves stellar rate-accuracy performance, far exceeding
the performance of alternative methods. We also presented “lite” and “micro” configurations of the
codec whose encoders consume minimal computational resources, and yet achieve comparable gains
in rate-accuracy performance.

Our work may be extended to other point cloud tasks, such as segmentation and object detection,
or to more complex tasks involving larger models and larger point clouds from real-world datasets.
Our work also sets a good starting point for further research into approaches for scalable and multi-task
point cloud compression. We hope that our work will help towards achieving the end goal of more
capable end devices.
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Chapter 4

Latent space motion analysis for
collaborative intelligence

When the input to a deep neural network (DNN) is a video signal, a sequence of feature tensors is
produced at the intermediate layers of the model. If neighboring frames of the input video are related
through motion, a natural question is, “what is the relationship between the corresponding feature
tensors?” By analyzing the effect of common DNN operations on optical flow, we show that the
motion present in each channel of a feature tensor is approximately equal to the scaled version of the
input motion. The analysis is validated through experiments utilizing common motion models. This
chapter has been presented as [29].

4.1 Introduction

Collaborative intelligence (CI) [69] has emerged as a promising strategy to bring AI “to the edge.”
In a typical CI system (Fig. 4.1), a deep neural network (DNN) is split into two parts: the edge
sub-model, deployed on the edge device near the sensor, and the cloud sub-model deployed in the
cloud. Intermediate features produced by the edge sub-model are transferred from the edge device to
the cloud. It has been shown that such a strategy may provide better energy efficiency [49], [70], lower
latency [49], [70], [71], and lower bitrates over the communication channel [56], [72], compared to
more traditional cloud-based analytics where the input signal is directly sent to the cloud. These
potential benefits will find a number of applications in areas such as intelligent sensing [73] and
video coding for machines [20], [74]. In particular, compression of intermediate features has become
an important research problem, with a number of recent developments [75]–[79] for the case when
the input to the edge sub-model is a still image.

When the input to the edge sub-model is video, its output is a sequence of feature tensors produced
from successive frames in the input video. This sequence of feature tensors needs to be compressed
prior to transmission and then decoded in the cloud for further processing. Since motion plays such an
important role in video processing and compression, we are motivated to examine whether any similar
relationship exists in the latent space among the feature tensors. Our theoretical and experimental
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results show that, indeed, motion from the input video is approximately preserved in the channels of
the feature tensor. An illustration of this is presented in Fig. 4.2, where the estimated input-space
motion field is shown on the left, and the estimated motion fields in several feature tensor channels are
shown on the right. These findings suggest that methods for motion estimation, compensation, and
analysis that have been developed for conventional video processing and compression may provide a
solid starting point for equivalent operations in the latent space.

Figure 4.1: Basic collaborative intelligence system.

Figure 4.2: Motion estimates for input frames (left) and select channels from the output of ResNet-34’s add_3
layer (right).

This chapter is organized as follows. In Section 4.2, we analyze the actions of typical operations
found in deep convolutional neural networks on optical flow in the input signal, and show that these
operations tend to preserve the optical flow, at least approximately, with an appropriate scale. In
Section 4.3 we provide empirical support for the theoretical analysis from Section 4.2.
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4.2 Latent space motion analysis

The basic problem studied in this chapter is illustrated in Fig. 4.3. Consider two images (video
frames) input to the edge sub-model of a CI system. It is common to represent their relationship
via a motion model. The question we seek to answer here is, “what is the relationship between the
corresponding feature tensors produced by the edge sub-model?” To answer this question, we will
look at the processing pipeline between the input image and a given channel of a feature tensor. In
most deep models for computer vision applications, this processing pipeline consists of a sequence of
basic operations: convolutions, pointwise nonlinearities, and pooling. We will show that each of
these operations tends to preserve motion, at least approximately, in a certain sense, and from this we
will conclude that (approximate) input motion may be observed in individual channels of a feature
tensor.

Figure 4.3: The problem studied in this chapter: if input images are related via motion, what is the relationship
between the corresponding intermediate feature tensors?

Motion model. Optical flow is a frequently used motion model in computer vision and video
processing. In a “2D+t” model, I(x, y, t) denotes pixel intensity at time t, at spatial position
(x, y). Under a constant-intensity assumption, optical flow satisfies the following partial differential
equation [80]:

∂I

∂x
vx + ∂I

∂y
vy + ∂I

∂t
= 0, (4.1)

where (vx, vy) represents the motion vector. For notational simplicity, in the analysis below we will
use a “1D+t” model, which captures all the main ideas but keeps the equations shorter. In a “1D+t”
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model, I(x, t) denotes intensity at position x at time t, and the optical flow equation is

∂I

∂x
v + ∂I

∂t
= 0, (4.2)

with v representing the motion. We will analyze the effect of basic operations — convolutions,
pointwise nonlinearities, and pooling — on (4.2), to gain insight into the relationship between input
space motion and latent space motion.

Convolution. Let f be a (spatial) filter kernel, then the optical flow after convolution is a solution
to the following equation

∂

∂x
(f ∗ I)v′ + ∂

∂t
(f ∗ I) = 0, (4.3)

where v′ is the motion after the convolution. Since the convolution and differentiation are linear
operations, we have

f ∗
(

∂I

∂x
v′ + ∂I

∂t

)
= 0. (4.4)

Hence, solution v from (4.2) is also a solution of (4.4), but (4.4) could also have other solutions,
besides those that satisfy (4.2).

Pointwise nonlinearity. Nonlinear activations such as sigmoid, ReLU, etc., are commonly
applied in a pointwise fashion on the output of convolutions in deep models. Let σ(·) denote such
a pointwise nonlinearity, then the optical flow after this nonlinearity is a solution to the following
equation

∂

∂x
[σ(I)] v′ + ∂

∂t
[σ(I)] = 0, (4.5)

where v′ is the motion after the pointwise nonlinearity. By using the chain rule of differentiation, the
above equation can be rewritten as

σ′(I) ·
(

∂I

∂x
v′ + ∂I

∂t

)
= 0. (4.6)

Hence, again, solution v from (4.2) is also a solution of (4.6). It should be noted that (4.6) may have
solutions other than those from (4.2). For example, in the region where inputs to ReLU are negative,
the corresponding outputs will be zero, so σ′(I) = 0. Hence, in those regions, (4.6) will be satisfied
for arbitrary v′. Nonetheless, the solution from (4.2) is still one of those arbitrary solutions.

Pooling. There are various forms of pooling, such as max-pooling, mean-pooling, learnt pooling
(via strided convolutions), etc. All these can be decomposed into a sequence of two operations: a
spatial operation (local maximum or convolution) followed by scale change (downsampling). Spatial
convolution operations can be analyzed as above, and the conclusion is that motion before such an
operation is also a solution to the optical flow equation after such an operation. Hence, we will focus
here on the local maximum operation and the scale change.

Local maximum. Consider the maximum of function I(x, t) over a local spatial region [x0 −
h, x0 + h], at a given time t. We can approximate I(x, t) as a locally-linear function, whose slope is
the spatial derivative of I at x0, ∂

∂xI(x0, t). If the derivative is positive, the maximum is I(x0 + h, t),
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and if it is negative, it is I(x0 − h, t). In the special case when the derivative is zero, any point in
[x0 − h, x0 + h], including the endpoints, is a maximum. From Taylor series expansion of I(x, t)
around x0 up to and including the first-order term,

I(x0 ± ϵ, t) ≈ I(x0, t) ± ∂

∂x
I(x0, t) · ϵ, (4.7)

for |ϵ| ≤ h. With such linear approximation, the local maximum of I(x, t) over [x0 − h, x0 + h]
occurs either at x0 +h or at x0 −h, depending on the sign of ∂

∂xI(x0, t); if the derivative is zero, every
point in the interval is a local maximum. Hence, the local maximum of I(x, t) can be approximated
as

max
x∈[x0−h,x0+h]

I(x, t)

≈ I(x0, t) + sign
(

∂

∂x
I(x0, t)

)
· ∂

∂x
I(x0, t) · h.

(4.8)

Let (4.8) be the definition of M(x0, t), the function that takes on local spatial maximum values of
I(x, t) over windows of size 2h. The optical flow after such a local maximum operation is described
by

∂M

∂x
v′ + ∂M

∂t
= 0, (4.9)

where v′ represents the motion after local spatial maximum operation. Using (4.8) in (4.9), after
some manipulation we obtain the following equation

∂I

∂x
v′ + ∂I

∂t
+ sign

(
∂I

∂x

)
· ∂

∂x

(
∂I

∂x
v′ + ∂I

∂t

)
· h = 0. (4.10)

Note that if v′ satisfies the original optical flow equation (4.3), it will also satisfy (4.10), hence
pre-max motion v is also one possible solution to post-max motion v′.

Scale change. Finally, consider the change of spatial scale by a factor s, such that the new signal
is I ′(x, t) = I(s · x, t). The optical flow equation is now

∂I ′

∂x
v′ + ∂I ′

∂t
= 0. (4.11)

Since ∂I′

∂x = s · ∂I
∂x and ∂I′

∂t = ∂I
∂t , we conclude that v′ = v/s, where v is the solution to pre-scaling

motion (4.2). Hence, as expected, down-scaling the signal spatially by a factor of 2 (s = 2) would
reduce the motion by a factor of 2.

Combining the results of the above analyses, we conclude that convolutions, pointwise non-
linearities, and local maximum operations tend to be motion-preserving operations, in the sense
that pre-operation motion is also a solution to post-operation optical flow, at least approximately.
The operation with the most obvious impact on motion is scale change. Hence, when looking at
latent-space motion at some layer in a deep model, we should expect to find motion similar to the
input motion, but scaled down by a factor of nk, where k is the number of pooling operations (over
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n × n windows) between the input and the layer of interest. Specifically, if v is the motion vector at
some position in the input frame, then at the corresponding spatial location in all the channels of the
feature tensor we can expect to find the vector

v′ ≈ v/nk. (4.12)

In Section 4.3, we will verify these conclusions experimentally.

4.3 Experiments

An illustration of the correspondence between the input-space motion and latent-space motion was
shown in Fig. 4.2. This example was produced using a pair of frames from a video of a moving car.
The motion vectors were estimated using an exhaustive block-matching search at each pixel, which
sought to minimize the sum of squared differences (SSD). In the input frames, whose resolution was
224 × 224, the block size of 31 × 31 around each pixel and the search range of ±11 were used. In
the corresponding feature tensor channels, whose resolution was 28 × 28, the block size of 3 × 3 and
a search range of ±5 were used. Although the estimated motion vector fields are somewhat noisy, the
similarity between the input-space motion and latent-space motion is evident.

To examine the relationship between input-space and latent-space motion more closely, we
performed several experiments with synthetic input-space motion. In this case, exact input-space
motion is known, so relationship (4.12) can be tested more reliably. Fig. 4.4 shows examples of
various transformations (translation, rotation, stretching, shearing) applied to an input image of a dog.
The second column displays several channels from the actual tensor produced by the transformed
image, and the third column shows the corresponding channels produced by motion compensating
the tensor of the original image via (4.12). The last column shows the difference between the actual
and predicted tensor channels. Note that regions that cannot be predicted, such as regions “entering
the frame,” were excluded from difference computation. As seen in Fig. 4.4, the model (4.12) works
reasonably well, and the differences between the actual and predicted tensors are low.

For quantitative evaluation, experiments were conducted on several layers of ResNet-34 [81] and
DenseNet-121 [82]. Normalized Root Mean Square Error (NRMSE) [83] was used for this purpose:

NRMSE = 1
R

√√√√ 1
N

N∑
i=1

(pi − ai)2, (4.13)

where ai is the actual tensor value produced from the transformed input, pi is the tensor value
predicted using our motion model (4.12), N is the number of elements in the feature tensor, and R is
the dynamic range. Again, regions that cannot be predicted were excluded from NRMSE computation.
Fig. 4.5 shows NRMSE computed across a range of parameters for several transformations, at various
layers of the two DNNs.
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Figure 4.4: Examples of motion transformations applied to reference image. The output tensors of ResNet-34’s
add_3 layer are reliably predicted from only the reference tensor and known input-space motion.
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Figure 4.5: NRMSE across parameter ranges for translation (top-left), rotation (top-right), scaling (bottom-left),
and shear (bottom-right). For translation, NRMSE local minima occur when the input-space shifts correspond
to integer latent-space shifts in (4.12).

As seen in Fig. 4.5, NRMSE goes up to about 0.04 for reasonable ranges of transformation
parameters. How good is this? To answer this question, we set out to find the typical values of
NRMSE found in conventional motion-compensated frame prediction. In a recent study [84], the
quality of frames predicted by conventional motion estimation and motion compensation (MEMC)
in High Efficiency Video Coding (HEVC) [85] was compared against a DNN developed for frame
prediction. From Table III in [84], the luminance Peak Signal to Noise Ratio (PSNR) of frames
predicted uni-directionally by the DNN and conventional HEVC MEMC was in the range 27–41 dB
over several HEVC test sequences. NRMSE can be computed from PSNR as

NRMSE = 1
256

√
2552

10PSNR/10 , (4.14)

so the PSNR range of 27–41 dB corresponds to the NRMSE range of 0.009–0.044. These levels of
NRMSE are indicative of how much motion models used in video coding deviate from the true motion.
As seen in Fig. 4.5, the model (4.12) produces NRMSE in the same range, so the accuracy of (4.12)
is comparable to the accuracy of common motion models used in video coding. Another illustration
of this is presented in Fig. 4.6, which shows the histogram of NRMSE computed across a range of
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affine transformation parameters. Hence, (4.12) represents a good starting point for development of
latent-space motion compensation.

Figure 4.6: NRMSE histogram computed for an affine motion model [86] over the combination of the
following seven independent uniformly distributed parameters: x- and y-translation (±32 px), x- and y-scaling
(0.95–1.05), x- and y-shearing (±5◦), and rotation (±10◦).

4.4 Conclusions

Using the concept of optical flow, in this chapter we analyzed motion in the latent space of a deep
model induced by the motion in the input space, and showed that motion tends to be approximately
preserved in the channels of intermediate feature tensors. These findings suggest that motion
estimation, compensation, and analysis methods developed for conventional video signals should be
able to provide a good starting point for latent-space motion processing, such as motion-compensated
prediction and compression, tracking, action recognition, and other applications.
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Chapter 5

Conclusion

In this thesis, we have explored various aspects of learned compression for images, point clouds, and
video.

Our first contribution made in Chapter 2, “Compression of probability distributions”, proposes a
simple low-complexity and yet effective method for dynamically adapting the entropy bottleneck to
the input distribution. The static entropy bottleneck is a common component in many SOTA learned
compression models. However, its proportional bitrate usage is minimal in image compression
models, in comparison to the Gaussian conditional component — though, this is likely because of
its non-adaptive nature! Thus, replacing the static entropy bottleneck with an alternative adaptive
entropy bottleneck may lead to a small but consistent boost in performance. It should be noted that
a correct plug-and-play end-to-end training implementation of our dynamic entropy model is still
under development.

Nonetheless, when trained on a pretrained model with frozen transform weights, our dynamically
adaptive entropy bottleneck showed gains of -6.95% in BD-rate over a static entropy bottleneck.
Thus, our method provides a low-complexity mechanism that can be used to aid in building practical,
efficient models for the real world. Currently, many SOTA models have been largely focused on
RD performance. While the exceptional results on the frontier of RD performance achievement are
exciting, it is important to step back and think about how to make learned compression a feasible
option for practical use. Our proposed method takes a step in that direction. It is quite possible
that a practical standardized learned codec might someday make use of our highly efficient low-cost
solution in lieu of a heavier alternative.

Our work presented in Chapter 3, “Point cloud compression for classification”, opens the way
for point cloud-oriented machine-task oriented codecs. We showed how a simple Point Net-based
codec focused on the machine task can achieve significantly better results than a more conventional
“compress, transmit, decompress, machine task model” approach. Furthermore, our “micro” encoder
operates at an ultra-low complexity of 48 MACs/pt, and yet achieves a far better accuracy for any
given bitrate than the conventional approach.

Interestingly, our codec comes close to the theoretical limits of compression for 40 evenly-
distributed class labels. This can in part be attributed to the inherently low entropy of small point
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clouds. (e.g. SOTA codecs compress to 1̃ bit/pt with acceptable amounts of distortion.) But another
dominant factor is that arguably, the ModelNet40 dataset contains fairly easy-to-classify CAD object
point clouds that are noise-free, isolated, and well-defined from all angles. In comparison, real world
point clouds are much noisier, contain a surrounding environment, and often only have measurements
visible from a particular angle. This is evident in the case of LIDAR-generated point clouds. It is
harder to isolate the relevant information in such a setting. Thus, real-world scenarios present a
greater challenge for machine-task oriented codecs. Nonetheless, we believe that with some effort,
machine-task codecs can demonstrate their utility in more complex settings.

In Chapter 4, “Latent space motion analysis for collaborative intelligence”, we showed that in
convolutional-based models, motion within the input domain leads to predictable motion within the
latent domain. Furthermore, we quantified how predictable the next “latent frame” is in terms of the
amount of residual error that is produced by warping the “reference latent frame”. This is akin to
video coding via p-frames, except in the latent domain. We found that the residual NRMSE is kept
under 0.04 for randomly tested “reasonably expected” affine transformations/warps. (For reference, a
NRMSE of 0.04 very roughly corresponds to 27 dB PSNR for conventional image coding.)

Our results suggest that learned video compression approaches that rely upon warping of the
latent space are feasible. Methods such as Scale-Space Flow [13] rely upon transforming the predicted
frame back into the input domain before applying motion-based warping, and then computing the
residual frame, and then transforming the residual back into a latent domain for encoding. Potentially,
this costly and possibly even suboptimal step of converting back-and-forth between domains can be
eliminated by simply warping the latent space directly, as our study indicates may be viable.

All in all, we believe that our work has contributed to the new and promising field of learned
compression.
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