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Traditional Transform Coding: JPEG in a nutshell

Figure adapted from [J. Ballé et al.], “End-to-end optimized image compression,” ICLR, 2017. 
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Nonlinear Transform Coding

Figure adapted from [J. Ballé et al.], “End-to-end optimized image compression,” ICLR, 2017. 
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Multi-Task Image Coding

Split transform domain latent space for machine analytics.    “Video Coding for Machines” (VCM).

Improvement in bitrate
for analytics tasks

without reduction in accuracy.

Figure courtesy of  [H. Choi et al.], “Scalable Image Coding for Humans and Machines,” IEEE Transactions on Image Processing, 2022. 

⇒  
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Bitstream

Scalable Image Compression

Image taken from  https://www.mathworks.com/discovery/object-detection.html 

Reconstruction (for humans)

Computer vision task (for machines)

Base bitstream

Base + enhancement bitstream

Input
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(b)
“Base” and “enhancement” obtained 

from same transform on     .

(a)
“Enhancement” is residual error in 

reconstructing from “base”.

(c)
“Base” from          and 

“enhancement” only from   ..

Transmitted bitstreams are highlighted.

Prior Work
ProposedChoi et al.Chamain et al.

[Yan et al.], “End-to-end optimized image compression for machines, a study,” DCC, 2021.
[Choi et al.], “Scalable Image Coding for Humans and Machines,” IEEE Transactions on Image Processing, 2022. 
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Prior Work: Choi et al.

Figure adapted from  [H. Choi et al.], “Scalable Image Coding for Humans and Machines,” IEEE Transactions on Image Processing, 2022. 

ˆ
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Idea: Learned Disentangled Latent Spaces
Motivation is to have little (or none!) excess rate:                         . 

Proposed approach is based on variational inference.

by chain rule

since 
and 

The data likelihood is given by integrating:

Unfortunately, intractable!
graphical model
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Overcoming Intractability
Introduce variational posterior.

Loss function construction turns out to be very similar to Ballé et al. (2018).

We seek to minimize Kullback-Leibler (KL) divergence between            .

Impose above factorization by system model.

[J. Ballé et al.], “Variational Image Compression with a Scale Hyperprior,” ICLR, 2018.

from
derived

from
derived
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0 0

Minimize KL between             over dataset of         :
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Proposed Architecture

Features are generated from
“front” half of task model.

Model is able to create a more 
task-optimized bitstream.

“Resize” to match latent dimensions.

Features are fed into
“back” half of task model.
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Proposed Architecture

13



Experimental Setup

● Various architecture configurations for the tuple                       .

● Train on Vimeo-90K dataset with “distortion” computed using mean-squared error (MSE).

● Evaluate object detection on COCO 2014 validation dataset using mAP (IoU=0.5).

● Evaluate input reconstruction on Kodak dataset using MSE and MS-SSIM.

● Benchmark performance in comparison with:
○ Standard codecs such as HEVC, VVC  ⇒  do not support task-scalability!

○ Comparative model (without PixelCNN-style autoregression) from Choi et al.

[HEVC]  http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.20+SCM-8.8/
[VVC]  https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tags/VTM-12.3/
[Vimeo-90K]  Xue et al. “Video Enhancement with Task-Oriented Flow,” IJCV, 2019.
[COCO 2014]  T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” 2014.
[Kodak]  http://r0k.us/graphics/kodak/ 
[MS-SSIM]  Z. Wang et al., “Multiscale structural similarity for image quality assessment,” Asilomar Conf. Signals, Systems, and Computers, 2003.
[H. Choi et al.]  “Scalable Image Coding for Humans and Machines,” IEEE Transactions on Image Processing, 2022.
[PixelCNN]  Oord et al., “Pixel Recurrent Neural Networks,” PMLR, 2016.

# of channels for 

# of channels for 

# of hyperprior blocks
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Performance Across Various Metrics

(b)
Input reconstruction on Kodak

PSNR vs. bpp

(a)
Task accuracy on COCO 2014 val

mAP (IoU=0.5) vs. bpp

(c)
Input reconstruction on Kodak

MS-SSIM vs. bpp

Baseline accuracy of YOLOv3 on COCO 2014 val, including JPEG-compressed images, is 55.85% mAP at 4.80 bpp.
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Quick Recap of Entropy and Mutual Information

Enhancement bitstreamBase bitstream

“Redundant” information
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Disentanglement

Fully disentangled
Shaded area = 1
Practical rate cost = 1

Redundancy in bitstreams
Shaded area = 1
Practical rate cost = 1.5

Shaded area  = 

Redundancy  ∝

Practical rate cost  = 

(i)

(ii)
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Definition:

Redundancy

Codec

Ours 0.3 0.7

Choi et al. 0.6 0.05

Bounds on redundancy in enhancement 
bitstream under respective entropy models.

Codec entropy rates (in bits per pixel) 
measured at 2% loss threshold in mAP.

≤  0.4

≤  1.0

0  ≤  

0  ≤

Base Enhancement
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Feature maps
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top-8 channels ordered by rate

     =  base  (for machine vision)
     =  enhancement  (for humans) 19



Conclusion and Future Work

● DNN-based image codec with a new variational formulation.

○ Offers latent-space scalability for human and machine tasks.

○ New way of disentangling the learned latent representations.

● Significant bit reductions at the base layer.

● Needs further investigation about improving reconstruction quality 
while maintaining the analytics performance.
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Thank you
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Idea: Learned Disentangled Latent Spaces
Motivation is to have little (or none!) excess rate:                         . 

Proposed approach is based on variational inference.
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Overcoming Intractability
Introduce factored variational posterior.

Loss function construction turns out to be very similar to Ballé et al. (2018).

We seek to minimize Kullback-Leibler (KL) Divergence between            .

Impose above factorization by system model.

[J. Ballé et al.], “Variational Image Compression with a Scale Hyperprior,” ICLR, 2018. 24



Evolution of the redundancy metrics during training. 

Definition:

Estimate:

Clustering function

Redundancy during training
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