
Shared Mobile-Cloud Inference for
Collaborative Intelligence

Mateen Ulhaq

1

Outline

1. Background
2. Single tensor compression
3. Reusing image codecs
4. Towards tensor stream compression
5. Error concealment
6. Future work

2

Background

3

Inference strategies
Inference of deep learning models is
traditionally done directly on the mobile
device (“client-only”) or in the cloud
(“server-only”).

Client-only inference:
slower hardware than server;
limited to small models

Server-only inference:
depends on network connection quality;
consumes bandwidth and energy;
possible privacy concerns

4

Shared inference
Key idea: reduce amount of data
transmitted

Compared with client-only:

● Reduce inference times
● Reduce computational load

Compared with server-only:

● Reduce inference times
● Save bandwidth
● Save device energy
● Better privacy

5

Cumulative inference time at layer Uncompressed data size by layer 6

Layers of a deep learning model

Compressed data size by layerUncompressed data size by layer 7

Layers of a deep learning model

Total inference time

8

Total inference time

9

Amount of data transmitted:

Horizontal asymptotes:

Reasonable assumptions:

Experimental tests
10

● In-lab experiments on
Android device and
remote server 5 km away
with uncompressed tensors

● Shows similar trends as
modelled on previous slide

Prototype

Demoed at NeurIPS 2019 conference.

Client: Android; Kotlin, Tensorflow Lite
Server: Remote PC; Python, Tensorflow

Low-latency, high-throughput shared inference:
● Process more than one frame at a time
● Synchronize to avoid “backpressure”

11

5 ms

40 ms

5 ms

5 ms

10 ms

20 ms

20 ms

Network

Network

C
lie

nt
S

er
ve

r

Single tensor compression

12

Client-side inference featuremap
13

Distributions of neuron output values

● Plotted: Mixture
distribution of neuron
output values at a layer

● Experimentally appears
normal

● Most values are within 3
stddev about the mean

14

Uniform quantization
15

Top-1 accuracy Reconstruction error (MSE)

calculated over 16k samples from dataset calculated over 16k samples from dataset

Quantized tensor

Reusing image codecs

16

Process
Client-side:

1. Input is a 224x224 image
2. Client model inference on image
3. Quantize 3D tensor
4. Reshape into 2D tensor
5. Encode via image codec

17

Server-side:

6. Decode via image codec
7. Reshape into 3D tensor
8. Dequantize 3D tensor
9. Server model inference on 3D tensor

10. Output is a probability vector
Compression

Decompression

Accuracy vs compressed size: JPEG
18

Accuracy vs compressed size: experimental setup
Dataset generation

1. ILSVRC 2012 (ImageNet, 1000 classes)
2. Crop to 1:1
3. Downscale to 224x224
4. Save as JPEG
5. Keep if file size is 30 ± 0.3 KB
6. Keep 16384 images

19

Experiment

1. Run client model inference on each image
2. Compress each tensor via codec at various

quality/bitrate settings, generating 100,000
different compressed tensors

3. Bin by size into logarithmically spaced bins
4. Decompress tensors
5. Run server model inference
6. Compute top-1 accuracy for each bin
7. Plot top-1 accuracy vs compressed size

Accuracy vs compressed size: JPEG
20

Shared inference accuracy curves generally improve as
we go through deeper and deeper layers

Accuracy vs compressed size: JPEG 2000
21

Shared curve seems to sustain maximum accuracy
slightly longer than JPEG

Towards tensor stream compression

22

23

Motion compensation

Difference

Reference

16 px

32 px

48 px

● Global translation of input by x
pixels corresponds to x / 2³ px
translation in tensor

16 px → 2 px
32 px → 4 px
48 px → 6 px

● Motion compensation w.r.t.
reference tensor

● PSNR: 90 dB

Motion compensated
tensor

Image Tensor

24

Motion compensation

Difference

Reference

18 px

34 px

50 px

● Global translation of input by x
pixels corresponds to x / 2³ px
translation in tensor

18 px → 2.25 px
34 px → 4.25 px
50 px → 6.25 px

● Motion compensation w.r.t.
reference tensor

● PSNR: 75 dB

Motion compensated
tensor

Image Tensor

Error concealment

25

Error concealment: experimental setup
Goal: fill missing tensor entries in a way that minimizes drop in accuracy.

1. Reuse generated dataset from earlier.
2. Randomly select i.i.d. proportion of tensor entries.
3. Fill missing entries with best guess.
4. Calculate top-1 accuracy.
5. Plot average over many samples.

Results:
● 5% missing elements → 0.2% drop in accuracy
● 10% missing elements → 2% drop in accuracy
● 20% missing elements → 5% drop in accuracy

26

Randomly missing tensor elements

Randomly missing tensor channels

Comparison of error
concealment methods

Error concealment of missing tensor elements
27

Tensor elements randomly
“missing” from tensor.

Recovery methods.
Set missing elements to:

1. zero
2. realtime mean of channel
3. mean element over large,

representative dataset
4. “hybrid” of (2) and (3)

Error concealment of missing tensor channels
28

Tensor elements randomly
“missing” from tensor.

Recovery methods.
Set missing elements to:

1. zero
2. realtime mean of channel
3. mean element over large,

representative dataset
4. “hybrid” of (2) and (3)

Future work

29

● Ease of use for non-experts
(e.g. mobile app developers)

● Extensibility for researchers
● Well-documented API

Future work: libraries
Proposed features:

● backpressure-aware shared inference
pipelines for real-time data processing

● combinators for methods used in
tensor compression (e.g. quantization,
tiling/weaving to convert between 3D and 2D
tensor shapes, and interfacing with
image/video/tensor codecs)

● real-time tensor streaming protocol
● real-time monitoring statistics for analysis
● real-time inference strategy selection based

on network conditions

30

Improved model architectures

● Heavy computation reserved for server-side model
● High compressibility (lossily) of intermediate tensor

Compression

● Better tensor stream compression through reuse of motion vectors
● Better usage of redundancies in tensor (esp. for single tensor compression)

Networking

● Network protocol for low-latency, real-time compressed tensor streams

Future work

31

Thank you

32

33

References

Bonus slides

34

Mean and stddev (avg of 4096 samples)
35

Uniform quantization, per-neuron distribution

calculated over 16k samples from dataset

36

Top-1 accuracy Reconstruction error (MSE) Quantized tensor

calculated over 16k samples from dataset

Total inference time

37

Accuracy vs KB: JPEG
38

Accuracy vs KB: JPEG 2000
39

Normality of output neuron values

● Plotted: p-values of
Shapiro-Wilk test for normality
(frequentist)

● p-values clipped to [0, 0.05]
● 4096 input samples

Most neuron outputs are normally
distributed (i.e. p >= 0.05) in
response to input samples

40

41

Graveyard

Script
Target audiences: - Thesis committee - Lab members - "General" engineering audience (outside field of deep learning) - Future interested people looking at recording of defence > 1: Title - Hi everyone. - Thank you for joining me today. - I'll be presenting my thesis defence on the topic of "Shared ..." > 2: Outline - We'll start by looking at the background. (...???) - Then,
we'll [look] at how to compress the data that is transmitted to the cloud. - Specifically, we will [talk about] the compression of single tensors, reusing image codecs for compression, developing techniques for compression of tensor streams. - Next, we will discuss some simple error concealment strategies for tensor data. - Finally, we will [discuss] possible extensions to this
thesis and important work that remains to be done in the field of collaborative intelligence. > 3: Background - Let's start with the background. > 4: Inference strategies - Traditionally, there are two primary strategies that have been used to perform inference of deep learning models on mobile devices. - The first strategy is to perform the entire inference on the mobile device
itself. This is shown in the diagram on the top. An image is inputted into the deep learning model running on the client, and the resulting label is then outputted by the model. - The second strategy is to perform the entire inference in the cloud. This is shown in the next diagram. The input image is transmitted over the network to the server, which then performs the
inference. - These strategies both have their own drawbacks. - With the client-only inference strategy, the inference tends to run slower than server-only inference simply because servers tend to have better hardware than mobile devices. As a result, this puts a limit on the size and complexity of the model that can be run completely on the mobile client. - On the other
hand, server-only inference requires transmission of the input image over the network, and is thus dependent on the quality of the network connection, upload bandwidth caps, and consumes energy due to radio transmission. Furthermore, it also introduces privacy concerns since the input image must be visible to the server in order to perform the inference. > 5: Shared
inference - A third alternative to the previous two inference strategies is "shared inference". This concept has recently been introduced (in the Neurosurgeon paper) and is under active research. - This is visualized in the diagram on the bottom-right. With shared inference, the deep learning model is split partway through so that the first part of the inference is done on the
client device. The information from this inference is then sent over the network to the server, which performs the second half of the inference. The result can then be transmitted back to the client. - The key idea behind this method is reducing the amount of data that is transmitted over the network. - In comparison to client-only inference, this strategy offers reduction in
inference latency and the computational load put on the mobile device. - In comparison to server-only inference, this strategy offers reduction in inference times on slower network connections, saves bandwidth and mobile device energy, and can offer better privacy since the original signal never leaves the mobile. > 6: Layers of a deep learning model - On this slide we
look at the layers of a deep learning model. - The figure on the left plots the total amount of time required to compute a given layer. The leftmost layer is the input layer and the rightmost is the output layer. The amount of time needed to compute and retrieve from GPU memory the contents of each layer is roughly increasing as we move deeper through the model. If we
split early enough in the model, the larger portion of the remaining computation can be offloaded to the server. For instance, if we split on the layer pointed to by the arrow, the client only needs to perform approximately a quarter of the workload, and the remaining three quarters is given to the server. The question is then if we can find a good location to split early enough
in the model. - The figure on the right plots the size of the data outputted at the given layer. As we move deeper through the layers, the size of the data volume increases and then decreases until it finally becomes a 4 KB probability vector. The size of the tensor data outputted at the arrow layer is for instance smaller than the size of the tensor outputted by the input layer.
A good choice for a split point is when the data size is sufficiently lower than the input, such as the location pointed at by the arrow. However, this data is uncompressed so it does not show the whole story. In fact, the data that is outputted by these layers can often be lossily compressed significantly. As we will see, part of this occurs because the accuracy of inference is
fairly resistant to errors in reconstruction, and this resilience often improves as we go deeper into the network. TODO fix script > 7: Layers of a deep learning model - ... > 8: Total inference time - This equation models the total inference time for shared inference as a sum of various terms. The first group of terms is the time spent on the client. The primary contributing
factors are the inference time for the client-side model and the amount of time needed to compress the data. The next group represents the time taken to transfer the data across the network. The amount of time taken to upload the data is given by this term, which is the amount of data divided by the upload bandwidth of the connection. The other term represents the
round trip time or ping. The terms in the last group represents the time taken to decompress the data and run server-side inference. All these terms summed together give the total inference time. > 9: Total inference time - If we vary the bandwidth and fix all the other terms to a constant, we can write the equation as a sum of some constant b and the data size divided by
the upload bandwidth. We now quite reasonably assume then that the amount of data transmitted is zero for client-only inference, somewhat larger for shared inference, and even larger for server-only inference. Also, we assume that asymptotically, server-only inference is faster than shared inference, and shared inference is faster than client-only inference. Then, we can
plot curves for client-only, shared, and server-only inference. - The client-only inference is constant w.r.t. bandwidth since no network transmission is needed. It has the lowest total inference time when upload bandwidth speed is zero. As the upload speed increases, shared inference becomes the strategy with lowest total inference time. As the upload speed further
increases, server-only inference becomes the dominant strategy. So, there is some interval of upload bandwidth speed within which shared inference is the fastest. > 10: Experimental tests - This graph was generated from real-world experiments with uncompressed data. It exhibits the same sort of characteristics as were described in the previous slide. > 11: Prototype - A
prototype was developed to demonstrate collaborative intelligence and help compare between client-only, server-only, and shared inference. An android device functioned as the mobile client, and it communicated with a remote server using TensorFlow for inference. This prototype was demoed at the NeurIPS 2019 conference. - The figure on the far right side shows the
shared inference pipeline. - This shows various example latencies that occur at each block throughout the pipeline. - In order to conduct low-latency, high-throughput shared inference, more than one frame must be processed by the pipeline at a time. For instance, if the client is currently waiting for the server to reply, it may begin processing the next frame. - The pipeline
must be properly synchronized to avoid backpressure due to blocks becoming overloaded with more frame requests than they can process. > 12: Single tensor compression - ... > 13: Client-side inference featuremap - After feeding the input image into the client-side model, we end up with an intermediate tensor. This is the featuremap for that tensor. - Compression
techniques make use of redundancies within the data or the removal of unimportant information. - In this case, there are many spatial redundancies within each channel, similar to natural images. Nearby pixels are roughly equal to each other. - There is also some redundancy between channels; for instance, in many of the channels, the outline of a dog is visible. - One
last thing to note the range of values, which is roughly between -1.5 and 1.2, which means most tensor elements lie within some small finite interval. > 14: Distributions of neuron output values - In order to apply entropy coding or image compression techniques, it is helpful to work with a small number of discrete values or symbols. The actual values of the tensor are
floating point values, but we can introduce some error to them without losing too much inference accuracy. - These two plots show the distribution of possible values that the tensor elements can take. - On the left is the distribution of tensor values at the output of a BatchNorm layer. And on the right is the distribution of tensor values from a layer that follows some
BatchNorm layer. Both seem to contain most of their values within some finite interval. This makes it easy to quantize and bin everything without introducing too much reconstruction error. - Furthermore, there is also a statistical distribution here that can be taken advantage of by entropy coding. > 15: Uniform quantization - This slide shows what happens when we
uniformly quantize the approximately normal distribution from the previous slide. - For a quantization level of 7 and clipping interval width of approximately 3-sigma from the **mean of the distribution**, we get no drop in the top-1 accuracy, computed over 16000 samples from the dataset. - It is also interesting to note that the MSE in tensor reconstruction only roughly
corresponds to the complete inference accuracy. It's important to measure the total inference accuracy, rather than just optimizing for minimal reconstruction error. TODO: bits/neuron > 16: Reusing image codecs - ... > 17: Process - The process for using an image codec is as follows: - First, the client-side model inference is run on the input and then the resulting 3D
tensor is quantized, and then reshaped into a 2D tensor. This can then be fed into the image codec. - The compressed bitstream can be transferred to the server, which then reconstructs the tensor and performs the remaining inference on it. > 18: Accuracy vs KB: JPEG - Here, we plot the accuracy of the complete inference versus the size of the compressed data with
JPEG compression applied. - The accuracy falls as more compression is applied. - The blue curve shows how the accuracy of server-only inference changes as compression is applied to the input image. - The orange curve represents the accuracy of shared inference with respect to the amount of compression applied to the intermediate tensor. - Some examples of
compressed tensors of various compressed sizes are shown on the right. At 30 KB, the tensor is visually indistinguishable from the uncompressed tensor. But as more compression is applied, it becomes blockier and more distorted. At 3 KB, each channel within the featuremap is unrecognizable from its original. Despite this, such heavily compressed tensors still can
produce reasonably accurate inferences. For instance, here, 3 KB tensors give an average drop in inference accuracy by 10%. - Furthermore, to allow no less than a drop in accuracy by 1%, one must not compress the data to less than 15 KB for server-only inference; whereas, for shared inference, one can compress to 10 KB to achieve the same accuracy threshold.
TODO: show where in model this was cut!!! (small figures + arrow) > 19: Accuracy vs KB: experimental setup - This slide describes the experimental setup for the curves shown in the previous slide. - The dataset is generated from ImageNet, and consists of images cropped and resized to 224x224. - The experiment is done by running client-side inference on each image.
Then, it is compressed to various sizes. These are then decompressed and server-side inference is run. The top-1 accuracy is then computed on the results. > 20: Accuracy vs KB: JPEG - This slide shows various plots for different layers of ResNet-34. - The figures on the left show a comparison of various layers with different dimensions of output tensors. - As we
progress through the layers, the shared inference curves tend to improve. - However, this is not entirely due to reduced dimensionality. The figure on the right plots shared inference curves for a large number of layers. The darker, bottommost curves represent earlier layers; whereas, the later layers are given by the lighter curves above. Evidently, there is gradual
improvement in inference accuracy, even as we move through layers with equal dimensionality. This shows that later layers are more resistant to reconstruction errors. > 21: Accuracy vs KB: JPEG 2000 - This slide shows the same layers as the previous slide, but using the JPEG 2000 codec instead. - The shared inference curves seem to sustain their maximum accuracy
slightly longer than JPEG, though they also drop off more sharply. - One of the benefits of JPEG 2000 over JPEG is that the bitrate controls are more predictable, which is a desirable property for reliability. TODO: > 22: Towards tensor stream compression - ... > 23: Motion compensation - For many input sequences, there is often some significant amount of similarity
between successive frames. For instance, the temporal redundancies between frames of a video give rise to motion estimation and motion compensation techniques. - On this slide, we demonstrate that many similar techniques should also be applicable to convolutional neural networks. - In this example, we translate the reference image by 16, 32, and 48 pixels. We
claim that this results in a corresponding translation of the tensor by 2, 4, and 6 pixels. - The second column shows the ground truth tensors which are produced by running inference on the translated images. - The third column shows the difference between the ground truth and the motion compensated reconstructions of the tensor. - Many of the interior region of the
channels are in fact a perfect reconstruction. This is likely because we are translating by what correspond to integer amounts within the tensor. This does not give the max pool operations in earlier layers an opportunity to introduce slight translational non-linearities. - The PSNR of this reconstruction is 90 dB, which is quite good. > 24: Motion compensation - On this slide,
we do the same as the previous slide, but with translation amounts that should give non-integer translations in the tensor. - In this case, the interior regions are no longer an exact reconstruction and the PSNR has fallen to 75 dB. This is still quite good, however. > 25: Error concealment - ... > 26: Error concealment: experimental setup - Often in network transmission,
some amount of the data may be lost or become corrupted. Error concealment seeks to reduce the negative effects of lost data by filling in lost tensor elements with values that minimize the drop in inference accuracy. Note that this is slightly different from attempting to minimize reconstruction error, though the objectives often align. - We reuse the dataset from earlier and
run the client-side inference model to obtain a collection of tensors. Then, we randomly select some proportion of tensor elements and assume that they've been lost. We then fill them with a best guess, and then calculate the top-1 inference accuracy. - The figures on the right show that as more and more of the tensor goes missing, the more the accuracy drops. - The
results show that if 5% of the tensor is missing, then using the concealment strategies tested, we only suffer a 0.2% drop in inference accuracy. Similarly, for 10% missing elements, a 2% drop; and for 20% missing, only a 5% drop. > 27: Error concealment of missing tensor elements - This figure is a close up of one of the figures from the previous slide. TODO:
visualization of "black" tensor/channels > 28: Error concealment of missing tensor channels - ... > 29: Future work - ... > 30: Future work: libraries - ... > 31: Future work - ... TODO: describe what better architectures would look like (properties) TODO: strike out #3? Backup slides: TODO slides with information theory? (in case Jie asks question on size reduction) Ivan
review: Cut out most of #10 and say we'll discuss later if questions on prototype For slide #17 note main points and don't spend too much time, then move to next slide where experimental details are

42

Changes
● Add citations small font in slide (e.g. neurosurgeon, jointdnn)
● Add actual video of demo
● Mention work has been published; earlier in slides
● Add notes (or text) for remembering what to say
● Move some technical figures (“details”) to other hidden area/etc
● Page numbers
● Slide overview (to know what’s coming)

(TODOs from speaker notes too)

43

Individual neuron output distributions over dataset
44

Example cut points

45

46

Layers of a deep learning model

Cumulative inference time at layer Size of data outputted by layer Compressed data size by layer

Featuremaps for clip_sigma=3, levels=4
47

Accuracy vs KB (JPEG)
48

Accuracy vs KB: JPEG
49

50

Motion compensation

Motion compensated
difference

Reference

16 px

32 px

48 px

● Global translation of input by x pixels
corresponds to x / 2³ px translation in tensor

16 px → 2 px
32 px → 4 px
48 px → 6 px

● Motion compensation w.r.t. reference tensor

● PSNR of reconstruction: 90 dB

51

● Global translation of input by x pixels
corresponds to x / 2³ px translation in tensor

18 px → 2.25 px
34 px → 4.25 px
50 px → 6.25 px

● Motion compensation w.r.t. reference tensor

● PSNR of reconstruction: 75 dB

Motion compensation

Motion compensated
difference

Reference

18 px

34 px

50 px

Accuracy vs KB: experimental setup
Dataset generation

1. ILSVRC 2012 (ImageNet, 1000 classes)
2. Crop to 1:1
3. Downscale to 224x224
4. Save as JPEG
5. Keep if file size is 30 ± 0.3 KB
6. Keep 16384 images

52

Experiment

1. Run client model inference on each image
2. Compress each tensor via codec at various

quality/bitrate settings, generating 100,000
different compressed tensors

3. Bin by size into logarithmically spaced bins
4. Decompress tensors
5. Run server model inference
6. Compute top-1 accuracy for each bin
7. Plot top-1 accuracy vs compressed size

Accuracy vs KB: JPEG

● Discrete Cosine Transform (DCT)
on 16x16 macroblocks

● Shared inference accuracy curves generally
improve as we go through deeper and
deeper layers

53

Accuracy vs KB: JPEG 2000

● Discrete Wavelet Transform (DWT)

● Shared curve seems to sustain
maximum accuracy slightly longer
than JPEG

● Server-only curve worse than JPEG
(possibly because re-encoding JPEG
to JPEG of a different quality level
merely corresponds to a rescaling of
quantization table)

54

Accuracy vs KB: JPEG
55

Shared inference accuracy curves generally improve as
we go through deeper and deeper layers

Accuracy vs KB: JPEG 2000
56

Shared curve seems to sustain maximum accuracy
slightly longer than JPEG

Error concealment of missing tensor channels (WRONG)
57

Tensor channels randomly
“missing” from tensor.

Recovery methods.
Set missing elements to:

1. zero
2. realtime mean of channel
3. precomputed mean

element over large,
representative dataset

4. “hybrid” of (2) and (3)

58

